karthikmn's picture
Update app.py
2ba9b24 verified
raw
history blame
5.2 kB
import gradio as gr
import os
from dotenv import load_dotenv
from simple_salesforce import Salesforce
from scorer import get_lead_score, calculate_score, calculate_confidence, calculate_risk
from recommender import generate_recommendation
from insights import explain_score
from logger import log_submission
# Load env variables
load_dotenv()
# Salesforce credentials
sf_username = os.getenv("SF_USERNAME")
sf_password = os.getenv("SF_PASSWORD")
sf_security_token = os.getenv("SF_SECURITY_TOKEN")
sf_domain = os.getenv("SF_DOMAIN", "login") # default to production
# Connect to Salesforce
sf = Salesforce(
username=sf_username,
password=sf_password,
security_token=sf_security_token,
domain=sf_domain
)
def push_to_salesforce(data: dict) -> str:
try:
response = sf.qualification_engine__c.create({
"Deal_Amount__c": data.get("amount"),
"Stage__c": data.get("stage"),
"Industry__c": data.get("industry"),
"Emails_7_Days__c": data.get("emails"),
"Meetings_30_Days__c": data.get("meetings"),
"Days_Until_Close__c": data.get("gap"),
"Rep_Feedback__c": data.get("feedback"),
"Lead_Score__c": data.get("lead_score"),
"AI_Score__c": data.get("score"),
"Confidence__c": data.get("confidence"),
"Risk_Level__c": data.get("risk"),
"AI_Recommendation__c": data.get("recommendation"),
"Explanation__c": data.get("explanation")
})
return f"βœ… Pushed to Salesforce with ID: {response['id']}"
except Exception as e:
return f"❌ Salesforce Error: {str(e)}"
def run_engine(amount, stage, industry, emails, meetings, close_gap, feedback=""):
try:
lead_score = get_lead_score(stage, emails, meetings, close_gap, amount)
ai_score = calculate_score(lead_score, emails, meetings, close_gap, amount)
confidence = calculate_confidence(ai_score)
risk = calculate_risk(ai_score, confidence, emails, meetings)
recommendation = generate_recommendation(stage, emails, meetings, risk)
explanation = explain_score(lead_score, ai_score, confidence, risk, stage, close_gap, emails, meetings)
log_submission({
"amount": amount, "stage": stage, "industry": industry,
"emails": emails, "meetings": meetings, "gap": close_gap,
"lead_score": lead_score, "score": ai_score, "confidence": confidence,
"risk": risk, "feedback": feedback
})
sf_status = push_to_salesforce({
"amount": amount, "stage": stage, "industry": industry,
"emails": emails, "meetings": meetings, "gap": close_gap,
"feedback": feedback, "lead_score": lead_score, "score": ai_score,
"confidence": confidence, "risk": risk,
"recommendation": recommendation, "explanation": explanation
})
return lead_score, ai_score, confidence, risk, recommendation, explanation, sf_status
except Exception as e:
return 0, 0, 0.0, "Error", "N/A", f"Error occurred: {str(e)}", f"❌ Error: {str(e)}"
# Read share flag from env
share_app = os.getenv("GRADIO_SHARE", "false").lower() == "true"
# Gradio UI
with gr.Blocks(title="AI Deal Qualification Engine") as app:
gr.Markdown("## πŸ€– AI-Powered Deal Qualification Engine")
gr.Markdown("Intelligently qualify sales deals using engagement and pipeline signals.")
with gr.Tab("πŸ“₯ Input"):
with gr.Row():
amount = gr.Number(label="πŸ’° Deal Amount (USD)", value=50000)
stage = gr.Dropdown(
["Prospecting", "Proposal/Price Quote", "Negotiation", "Closed Won", "Closed Lost"],
label="πŸ“Š Stage"
)
industry = gr.Textbox(label="🏭 Industry", value="Software")
with gr.Row():
emails = gr.Number(label="βœ‰οΈ Emails (Last 7 Days)", value=3)
meetings = gr.Number(label="πŸ“… Meetings (Last 30 Days)", value=2)
close_gap = gr.Number(label="πŸ“† Days Until Close", value=14)
feedback = gr.Textbox(label="πŸ’¬ Optional: Rep Feedback", placeholder="Add any qualitative insights...")
submit = gr.Button("πŸš€ Run AI Scoring")
with gr.Tab("πŸ“ˆ Results"):
with gr.Accordion("AI Scoring Output", open=True):
lead_score_out = gr.Number(label="πŸ”’ Lead Score", interactive=False)
ai_score_out = gr.Number(label="🌟 AI Score (0–100)", interactive=False)
confidence_out = gr.Number(label="πŸ“ Confidence", interactive=False)
risk_out = gr.Textbox(label="⚠️ Risk Level", lines=1, interactive=False)
reco_out = gr.Textbox(label="πŸ’‘ AI Recommendation", lines=2, interactive=False)
explain_out = gr.Textbox(label="🧠 Explanation", lines=5, interactive=False)
status = gr.Markdown("")
submit.click(
fn=run_engine,
inputs=[amount, stage, industry, emails, meetings, close_gap, feedback],
outputs=[lead_score_out, ai_score_out, confidence_out, risk_out, reco_out, explain_out, status]
)
app.launch(share=share_app)