import streamlit as st
import pandas as pd
from transformers import pipeline
from sentence_transformers import CrossEncoder
from sentence_transformers import SentenceTransformer
import string
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import nltk
# Download NLTK resources (run this once if not already downloaded)
nltk.download('punkt')
nltk.download('punkt_tab')
nltk.download('stopwords')
nltk.download('wordnet')
# Set modern page configuration
st.set_page_config(page_title="News Analyzer", layout="wide")
# Inject custom CSS for sleek dark blue theme with black fonts
st.markdown("""
""", unsafe_allow_html=True)
# Modern Header
st.markdown("
", unsafe_allow_html=True)
# Load the Hugging Face models
classifier = pipeline("text-classification", model="Sandini/news-classifier") # Classification pipeline
qa_pipeline = pipeline("question-answering", model="distilbert/distilbert-base-cased-distilled-squad") # QA pipeline
# Initialize Cross-Encoder for QA relevance scoring
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') # Pre-trained Cross-Encoder model
# Define preprocessing functions for classification
def preprocess_text(text):
if not isinstance(text, str):
text = ""
# Step 1: Lowercase the text
text = text.lower()
# Step 2: Remove punctuation
text = text.translate(str.maketrans('', '', string.punctuation))
# Step 3: Tokenize the text
tokens = word_tokenize(text)
# Step 4: Remove stopwords
stop_words = set(stopwords.words('english'))
tokens = [word for word in tokens if word not in stop_words]
# Step 5: Lemmatization
lemmatizer = WordNetLemmatizer()
tokens = [lemmatizer.lemmatize(word) for word in tokens]
# Step 6: Join tokens back into a single string
preprocessed_text = " ".join(tokens)
return preprocessed_text
# Reverse mapping (numeric label -> category name)
label_mapping = {
"Business": 0,
"Opinion": 1,
"Sports": 2,
"Political_gossip": 3,
"World_news": 4
}
reverse_label_mapping = {v: k for k, v in label_mapping.items()}
# Define a function to predict the category for a single text
def predict_category(text):
prediction = classifier(text)
predicted_label_id = int(prediction[0]['label'].split('_')[-1]) # Extract numeric label from 'LABEL_X'
return reverse_label_mapping[predicted_label_id]
# Responsive Layout - Uses full width
col1, col2 = st.columns([1.1, 1])
# Left Section - File Upload & CSV/Excel Display
with col1:
st.subheader("📂 Upload News Data")
uploaded_file = st.file_uploader("Upload a CSV or Excel file", type=["csv", "xlsx"])
if uploaded_file is not None:
# Determine the file extension
file_extension = uploaded_file.name.split('.')[-1]
if file_extension == 'csv':
df = pd.read_csv(uploaded_file)
elif file_extension == 'xlsx':
df = pd.read_excel(uploaded_file)
# Preprocess the content column and predict categories
if 'content' in df.columns:
df['content'] = df['content'].fillna("").astype(str)
df['preprocessed_content'] = df['content'].apply(preprocess_text)
df['class'] = df['preprocessed_content'].apply(predict_category)
# Drop the preprocessed_content column before displaying or saving
df_for_display = df.drop(columns=['preprocessed_content'], errors='ignore')
df_for_download = df.drop(columns=['preprocessed_content'], errors='ignore')
# Download button
st.download_button(
label="⬇️ Download Processed Data",
data=df_for_download.to_csv(index=False).encode('utf-8'),
file_name="output.csv",
mime="text/csv"
)
# CSV Preview Box
st.markdown("📜 CSV/Excel Preview
", unsafe_allow_html=True)
st.dataframe(df_for_display, use_container_width=True)
# Right Section - Q&A Interface
with col2:
st.subheader("🤖 AI Assistant")
# Answer Display Box (Initially Empty)
answer_placeholder = st.empty()
answer_placeholder.markdown("", unsafe_allow_html=True)
# Question Input
st.markdown("### 🔍 Ask Your Question:")
user_question = st.text_input("Enter your question here", label_visibility="hidden") # Hides the label
# Button & Answer Display
if st.button("🔮 Get Answer"):
if user_question.strip() and uploaded_file is not None:
# Ensure the DataFrame has the required content column
if 'content' in df.columns:
context = df['content'].dropna().tolist() # Use the content column as context
# Prepare pairs of (question, context)
pairs = [(user_question, c) for c in context]
# Score each pair using the Cross-Encoder
scores = cross_encoder.predict(pairs)
# Get top matches based on scores
top_indices = scores.argsort()[-5:][::-1] # Get indices of top 5 matches
top_context = "\n".join([context[i] for i in top_indices])
# Get answer from Hugging Face model using top context
result = qa_pipeline(question=user_question, context=top_context)
answer = result['answer']
else:
answer = "⚠️ File does not contain a 'content' column!"
else:
answer = "⚠️ Please upload a valid file first!"
answer_placeholder.markdown(f"{answer}
", unsafe_allow_html=True)