Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import pipeline
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
import string
|
7 |
+
from nltk.tokenize import word_tokenize
|
8 |
+
from nltk.corpus import stopwords
|
9 |
+
from nltk.stem import WordNetLemmatizer
|
10 |
+
import nltk
|
11 |
+
|
12 |
+
# Download NLTK resources (run this once if not already downloaded)
|
13 |
+
nltk.download('punkt')
|
14 |
+
nltk.download('punkt_tab')
|
15 |
+
nltk.download('stopwords')
|
16 |
+
nltk.download('wordnet')
|
17 |
+
|
18 |
+
# Set modern page configuration
|
19 |
+
st.set_page_config(page_title="News Analyzer", layout="wide")
|
20 |
+
|
21 |
+
# Inject custom CSS for sleek dark blue theme with black fonts
|
22 |
+
st.markdown("""
|
23 |
+
<style>
|
24 |
+
/* Global Styling */
|
25 |
+
body {
|
26 |
+
background: #0b132b;
|
27 |
+
font-family: 'Arial', sans-serif;
|
28 |
+
margin: 0;
|
29 |
+
padding: 0;
|
30 |
+
}
|
31 |
+
|
32 |
+
/* Header Styling */
|
33 |
+
.custom-header {
|
34 |
+
background: linear-gradient(to right, #1f4068, #1b1b2f);
|
35 |
+
padding: 1.5rem;
|
36 |
+
margin-bottom: 1.5rem;
|
37 |
+
border-radius: 12px;
|
38 |
+
text-align: center;
|
39 |
+
font-size: 30px;
|
40 |
+
font-weight: bold;
|
41 |
+
box-shadow: 0px 4px 15px rgba(0, 217, 255, 0.3);
|
42 |
+
}
|
43 |
+
|
44 |
+
/* Buttons */
|
45 |
+
.stButton>button {
|
46 |
+
background: linear-gradient(45deg, #0072ff, #00c6ff);
|
47 |
+
border-radius: 8px;
|
48 |
+
padding: 14px 28px;
|
49 |
+
font-size: 18px;
|
50 |
+
transition: 0.3s ease;
|
51 |
+
border: none;
|
52 |
+
}
|
53 |
+
.stButton>button:hover {
|
54 |
+
transform: scale(1.05);
|
55 |
+
box-shadow: 0px 4px 10px rgba(0, 255, 255, 0.5);
|
56 |
+
}
|
57 |
+
|
58 |
+
/* Text Input */
|
59 |
+
.stTextInput>div>div>input {
|
60 |
+
background-color: rgba(255, 255, 255, 0.1);
|
61 |
+
border-radius: 8px;
|
62 |
+
padding: 12px;
|
63 |
+
font-size: 18px;
|
64 |
+
}
|
65 |
+
|
66 |
+
/* Dataframe Container */
|
67 |
+
.dataframe-container {
|
68 |
+
background: rgba(255, 255, 255, 0.1);
|
69 |
+
padding: 15px;
|
70 |
+
border-radius: 12px;
|
71 |
+
}
|
72 |
+
|
73 |
+
/* Answer Display Box - Larger */
|
74 |
+
.answer-box {
|
75 |
+
background: rgba(0, 217, 255, 0.15);
|
76 |
+
padding: 35px;
|
77 |
+
border-radius: 15px;
|
78 |
+
border: 2px solid rgba(0, 217, 255, 0.6);
|
79 |
+
font-size: 22px;
|
80 |
+
text-align: center;
|
81 |
+
margin-bottom: 20px;
|
82 |
+
min-height: 150px;
|
83 |
+
box-shadow: 0px 2px 12px rgba(0, 217, 255, 0.3);
|
84 |
+
display: flex;
|
85 |
+
align-items: center;
|
86 |
+
justify-content: center;
|
87 |
+
transition: all 0.3s ease;
|
88 |
+
}
|
89 |
+
|
90 |
+
/* CSV Display Box */
|
91 |
+
.csv-box {
|
92 |
+
background: rgba(255, 255, 255, 0.1);
|
93 |
+
padding: 15px;
|
94 |
+
border-radius: 12px;
|
95 |
+
margin-top: 20px;
|
96 |
+
box-shadow: 0px 2px 12px rgba(0, 217, 255, 0.3);
|
97 |
+
}
|
98 |
+
</style>
|
99 |
+
""", unsafe_allow_html=True)
|
100 |
+
|
101 |
+
# Modern Header
|
102 |
+
st.markdown("<div class='custom-header'> 🧩 AI-Powered News Analyzer</div>", unsafe_allow_html=True)
|
103 |
+
|
104 |
+
# Load the Hugging Face models
|
105 |
+
classifier = pipeline("text-classification", model="Sandini/news-classifier") # Classification pipeline
|
106 |
+
qa_pipeline = pipeline("question-answering", model="distilbert/distilbert-base-cased-distilled-squad") # QA pipeline
|
107 |
+
|
108 |
+
# Initialize sentence transformer model for QA similarity
|
109 |
+
sentence_model = SentenceTransformer('all-MiniLM-L6-v2') # Pre-trained sentence model
|
110 |
+
|
111 |
+
# Define preprocessing functions for classification
|
112 |
+
def preprocess_text(text):
|
113 |
+
# Step 1: Lowercase the text
|
114 |
+
text = text.lower()
|
115 |
+
|
116 |
+
# Step 2: Remove punctuation
|
117 |
+
text = text.translate(str.maketrans('', '', string.punctuation))
|
118 |
+
|
119 |
+
# Step 3: Tokenize the text
|
120 |
+
tokens = word_tokenize(text)
|
121 |
+
|
122 |
+
# Step 4: Remove stopwords
|
123 |
+
stop_words = set(stopwords.words('english'))
|
124 |
+
tokens = [word for word in tokens if word not in stop_words]
|
125 |
+
|
126 |
+
# Step 5: Lemmatization
|
127 |
+
lemmatizer = WordNetLemmatizer()
|
128 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
129 |
+
|
130 |
+
# Step 6: Join tokens back into a single string
|
131 |
+
preprocessed_text = " ".join(tokens)
|
132 |
+
|
133 |
+
return preprocessed_text
|
134 |
+
|
135 |
+
# Reverse mapping (numeric label -> category name)
|
136 |
+
label_mapping = {
|
137 |
+
"Business": 0,
|
138 |
+
"Opinion": 1,
|
139 |
+
"Sports": 2,
|
140 |
+
"Political_gossip": 3,
|
141 |
+
"World_news": 4
|
142 |
+
}
|
143 |
+
reverse_label_mapping = {v: k for k, v in label_mapping.items()}
|
144 |
+
|
145 |
+
# Define a function to predict the category for a single text
|
146 |
+
def predict_category(text):
|
147 |
+
prediction = classifier(text)
|
148 |
+
predicted_label_id = int(prediction[0]['label'].split('_')[-1]) # Extract numeric label from 'LABEL_X'
|
149 |
+
return reverse_label_mapping[predicted_label_id]
|
150 |
+
|
151 |
+
# Responsive Layout - Uses full width
|
152 |
+
col1, col2 = st.columns([1.1, 1])
|
153 |
+
|
154 |
+
# Left Section - File Upload & CSV/Excel Display
|
155 |
+
with col1:
|
156 |
+
st.subheader("📂 Upload News Data")
|
157 |
+
uploaded_file = st.file_uploader("Upload a CSV or Excel file", type=["csv", "xlsx"])
|
158 |
+
|
159 |
+
if uploaded_file is not None:
|
160 |
+
# Determine the file extension
|
161 |
+
file_extension = uploaded_file.name.split('.')[-1]
|
162 |
+
|
163 |
+
if file_extension == 'csv':
|
164 |
+
df = pd.read_csv(uploaded_file)
|
165 |
+
elif file_extension == 'xlsx':
|
166 |
+
df = pd.read_excel(uploaded_file)
|
167 |
+
|
168 |
+
# Preprocess the content column and predict categories
|
169 |
+
if 'content' in df.columns:
|
170 |
+
df['preprocessed_content'] = df['content'].apply(preprocess_text)
|
171 |
+
df['class'] = df['preprocessed_content'].apply(predict_category)
|
172 |
+
|
173 |
+
# Drop the preprocessed_content column before displaying or saving
|
174 |
+
df_for_display = df.drop(columns=['preprocessed_content'], errors='ignore')
|
175 |
+
df_for_download = df.drop(columns=['preprocessed_content'], errors='ignore')
|
176 |
+
|
177 |
+
# Download button
|
178 |
+
st.download_button(
|
179 |
+
label="⬇️ Download Processed Data",
|
180 |
+
data=df_for_download.to_csv(index=False).encode('utf-8'),
|
181 |
+
file_name="output.csv",
|
182 |
+
mime="text/csv"
|
183 |
+
)
|
184 |
+
|
185 |
+
# CSV Preview Box
|
186 |
+
st.markdown("<div class='csv-box'><h4>📜 CSV/Excel Preview</h4></div>", unsafe_allow_html=True)
|
187 |
+
st.dataframe(df_for_display, use_container_width=True)
|
188 |
+
|
189 |
+
|
190 |
+
# Right Section - Q&A Interface
|
191 |
+
with col2:
|
192 |
+
st.subheader("🤖 AI Assistant")
|
193 |
+
|
194 |
+
# Answer Display Box (Initially Empty)
|
195 |
+
answer_placeholder = st.empty()
|
196 |
+
answer_placeholder.markdown("<div class='answer-box'></div>", unsafe_allow_html=True)
|
197 |
+
|
198 |
+
# Question Input
|
199 |
+
st.markdown("### 🔍 Ask Your Question:")
|
200 |
+
user_question = st.text_input("Enter your question here", label_visibility="hidden") # Hides the label
|
201 |
+
|
202 |
+
# Button & Answer Display
|
203 |
+
if st.button("🔮 Get Answer"):
|
204 |
+
if user_question.strip() and uploaded_file is not None:
|
205 |
+
# Ensure the DataFrame has the required content column
|
206 |
+
if 'content' in df.columns:
|
207 |
+
context = df['content'].dropna().tolist() # Use the content column as context
|
208 |
+
|
209 |
+
# Generate embeddings for the context and the question
|
210 |
+
context_embeddings = sentence_model.encode(context)
|
211 |
+
question_embedding = sentence_model.encode([user_question])
|
212 |
+
|
213 |
+
# Calculate cosine similarity
|
214 |
+
similarities = cosine_similarity(question_embedding, context_embeddings)
|
215 |
+
top_indices = similarities[0].argsort()[-5:][::-1] # Get top 5 similar rows
|
216 |
+
|
217 |
+
# Prepare the top 5 similar context rows
|
218 |
+
top_context = "\n".join([context[i] for i in top_indices])
|
219 |
+
|
220 |
+
# Get answer from Hugging Face model using top context
|
221 |
+
result = qa_pipeline(question=user_question, context=top_context)
|
222 |
+
answer = result['answer']
|
223 |
+
else:
|
224 |
+
answer = "⚠️ File does not contain a 'content' column!"
|
225 |
+
else:
|
226 |
+
answer = "⚠️ Please upload a valid file first!"
|
227 |
+
|
228 |
+
answer_placeholder.markdown(f"<div class='answer-box'>{answer}</div>", unsafe_allow_html=True)
|
229 |
+
|