phoner45 commited on
Commit
b78c3b6
·
verified ·
1 Parent(s): a92790b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py CHANGED
@@ -4,6 +4,7 @@ import joblib
4
  from fastapi import FastAPI, HTTPException
5
  from pydantic import BaseModel
6
  import uvicorn
 
7
 
8
  # Load model from the local storage (ensure the model file is in the same directory)
9
  model_path = "model.pkl"
@@ -12,6 +13,39 @@ gb_model_loaded = joblib.load(model_path)
12
  # Create FastAPI app
13
  app = FastAPI()
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  # Define class labels
16
  class_names = [
17
  'Emergency & Accident Unit', 'Heart Clinic',
 
4
  from fastapi import FastAPI, HTTPException
5
  from pydantic import BaseModel
6
  import uvicorn
7
+ import streamlit as st
8
 
9
  # Load model from the local storage (ensure the model file is in the same directory)
10
  model_path = "model.pkl"
 
13
  # Create FastAPI app
14
  app = FastAPI()
15
 
16
+ # Set the title of the app
17
+ st.title("Medical Prediction Model")
18
+
19
+ # Instruction text
20
+ st.write("Enter 32 features for prediction:")
21
+
22
+ # Create 32 input fields for user input
23
+ inputs = []
24
+ for i in range(32):
25
+ value = st.number_input(f"Feature {i + 1}", min_value=0, step=1)
26
+ inputs.append(value)
27
+
28
+ # Button to make prediction
29
+ if st.button("Predict"):
30
+ # Prepare the data for the request
31
+ input_data = {"features": inputs}
32
+
33
+ # Set the URL for your Hugging Face Space
34
+ url = "https://phoner45-mediguide-api.hf.space/predict" # Replace with your actual Space URL
35
+
36
+ # Make a POST request
37
+ response = requests.post(url, json=inputs)
38
+
39
+ # Check the response status code
40
+ if response.status_code == 200:
41
+ # Get the JSON response
42
+ prediction = response.json()
43
+ # Display the prediction results
44
+ st.success("Prediction Results:")
45
+ st.json(prediction)
46
+ else:
47
+ st.error(f"Error: {response.status_code} - {response.text}")
48
+
49
  # Define class labels
50
  class_names = [
51
  'Emergency & Accident Unit', 'Heart Clinic',