phonefern commited on
Commit
8fc0265
·
1 Parent(s): 2adac0e
Files changed (4) hide show
  1. Dockerfile +33 -0
  2. app.py +53 -0
  3. model.pkl +3 -0
  4. requirements.txt +6 -0
Dockerfile ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use an official Python runtime as a parent image
2
+ FROM python:3.9-slim
3
+
4
+ # Set environment variables
5
+ ENV PYTHONDONTWRITEBYTECODE=1 \
6
+ PYTHONUNBUFFERED=1
7
+
8
+ # Create a non-root user
9
+ RUN useradd --create-home user
10
+ # Set the working directory to the user's home directory
11
+ WORKDIR /home/user
12
+
13
+ # Copy and install dependencies
14
+ COPY --chown=user:user requirements.txt ./
15
+ RUN pip install --no-cache-dir --upgrade pip && \
16
+ pip install --no-cache-dir -r requirements.txt
17
+
18
+ # Copy the application code
19
+ COPY --chown=user:user app.py ./
20
+ COPY --chown=user:user rf_model.pkl ./
21
+
22
+ # Switch to the non-root user
23
+ USER user
24
+
25
+ # Set environment variables for the application
26
+ ENV HOME=/home/user \
27
+ PATH=/home/user/.local/bin:$PATH
28
+
29
+ # Expose the port uvicorn will run on
30
+ EXPOSE 8501
31
+
32
+ # Define the default command to run the application
33
+ CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8501"]
app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import numpy as np
3
+ import joblib
4
+ from fastapi import FastAPI, HTTPException
5
+ from pydantic import BaseModel
6
+ import uvicorn
7
+
8
+ # Load model from the local storage (ensure the model file is in the same directory)
9
+ model_path = "rf_model.pkl"
10
+ gb_model_loaded = joblib.load(model_path)
11
+
12
+ # Create FastAPI app
13
+ app = FastAPI()
14
+
15
+ # Define class labels
16
+ class_names = [
17
+ 'Emergency & Accident Unit', 'Heart Clinic',
18
+ 'Neuro Med Center', 'OPD:EYE', 'Dental',
19
+ 'OPD:MED', 'OPD:ENT', 'OPD:OBG',
20
+ 'OPD:Surgery + Uro.', 'Orthopedic Surgery',
21
+ 'GI Clinic', 'Breast Clinic', 'Skin & Dermatology'
22
+ ]
23
+
24
+ # Define the input format for FastAPI using Pydantic BaseModel
25
+ class InputData(BaseModel):
26
+ features: list[float] # List of 32 feature inputs
27
+
28
+ @app.post("/predict")
29
+ def predict(data: InputData):
30
+ try:
31
+ # Validate input length
32
+ if len(data.features) != 32:
33
+ raise HTTPException(status_code=400, detail=f"Expected 32 features, but got {len(data.features)}")
34
+
35
+ # Convert list to numpy array and reshape
36
+ input_array = np.array(data.features).reshape(1, -1)
37
+
38
+ # Get predictions
39
+ prediction = gb_model_loaded.predict_proba(input_array)
40
+
41
+ # Convert probabilities to percentage and format
42
+ probabilities = (prediction[0] * 100).round(2)
43
+ result_pro = {class_name: f"{prob:.2f}%" for class_name, prob in zip(class_names, probabilities)}
44
+
45
+ # Return result as JSON
46
+ return {'result': result_pro}
47
+
48
+ except Exception as e:
49
+ raise HTTPException(status_code=500, detail=str(e))
50
+
51
+ # Run the application with the following command if needed
52
+ # if __name__ == "__main__":
53
+ # uvicorn.run(app, host="0.0.0.0", port=8501)
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eefc4721e5f6d31845e925a604e34ca3e42107762c8d8ea7ffb68e5c5f3fb108
3
+ size 173541345
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ fastapi
2
+ uvicorn
3
+ numpy
4
+ joblib
5
+ pydantic
6
+ requests