Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,12 @@ import torch
|
|
3 |
import pickle
|
4 |
import pandas as pd
|
5 |
import gradio as gr
|
|
|
6 |
bi_encoder = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1")
|
7 |
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
8 |
corpus_embeddings=pd.read_pickle("corpus_embeddings_cpu.pkl")
|
9 |
corpus=pd.read_pickle("corpus.pkl")
|
|
|
10 |
def search(query,top_k=100):
|
11 |
print("Top 5 Answer by the NSE:")
|
12 |
print()
|
@@ -16,16 +18,24 @@ def search(query,top_k=100):
|
|
16 |
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
17 |
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
|
18 |
hits = hits[0] # Get the hits for the first query
|
|
|
19 |
##### Re-Ranking #####
|
20 |
# Now, score all retrieved passages with the cross_encoder
|
21 |
cross_inp = [[query, corpus[hit['corpus_id']]] for hit in hits]
|
22 |
cross_scores = cross_encoder.predict(cross_inp)
|
|
|
23 |
# Sort results by the cross-encoder scores
|
24 |
for idx in range(len(cross_scores)):
|
25 |
hits[idx]['cross-score'] = cross_scores[idx]
|
|
|
26 |
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
27 |
|
28 |
for idx, hit in enumerate(hits[0:5]):
|
29 |
ans.append(corpus[hit['corpus_id']])
|
30 |
return ans[0],ans[1],ans[2],ans[3],ans[4]
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import pickle
|
4 |
import pandas as pd
|
5 |
import gradio as gr
|
6 |
+
|
7 |
bi_encoder = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1")
|
8 |
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
9 |
corpus_embeddings=pd.read_pickle("corpus_embeddings_cpu.pkl")
|
10 |
corpus=pd.read_pickle("corpus.pkl")
|
11 |
+
|
12 |
def search(query,top_k=100):
|
13 |
print("Top 5 Answer by the NSE:")
|
14 |
print()
|
|
|
18 |
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
19 |
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
|
20 |
hits = hits[0] # Get the hits for the first query
|
21 |
+
|
22 |
##### Re-Ranking #####
|
23 |
# Now, score all retrieved passages with the cross_encoder
|
24 |
cross_inp = [[query, corpus[hit['corpus_id']]] for hit in hits]
|
25 |
cross_scores = cross_encoder.predict(cross_inp)
|
26 |
+
|
27 |
# Sort results by the cross-encoder scores
|
28 |
for idx in range(len(cross_scores)):
|
29 |
hits[idx]['cross-score'] = cross_scores[idx]
|
30 |
+
|
31 |
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
32 |
|
33 |
for idx, hit in enumerate(hits[0:5]):
|
34 |
ans.append(corpus[hit['corpus_id']])
|
35 |
return ans[0],ans[1],ans[2],ans[3],ans[4]
|
36 |
+
|
37 |
+
inp=gr.inputs.Textbox(lines=1, placeholder=None, default="", label="search you query here")
|
38 |
+
out=gr.outputs.Textbox(type="auto",label="search results")
|
39 |
+
|
40 |
+
iface = gr.Interface(fn=search, inputs=inp, outputs=[out,out,out,out,out],title="Neural Search Engine",theme="huggingface",layout='vertical')
|
41 |
+
iface.launch()
|