Samee-ur commited on
Commit
cc950c6
·
verified ·
1 Parent(s): e1541a1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +190 -0
app.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import gradio as gr
3
+ import json
4
+ import itertools
5
+ import numpy as np
6
+ import matplotlib.pyplot as plt
7
+ from rcwa import Material, Layer, LayerStack, Source, Solver
8
+ import openai
9
+ import logging
10
+ import random
11
+ import os
12
+
13
+ # --- Logging ---
14
+ logging.basicConfig(level=logging.INFO)
15
+ logger = logging.getLogger(__name__)
16
+
17
+ # --- API Key ---
18
+ openai.api_key = os.getenv("OPENAI_API_KEY")
19
+
20
+ # --- Constants ---
21
+ start_wl = 0.32
22
+ stop_wl = 0.80
23
+ step_wl = 0.01
24
+ wavelengths = np.arange(start_wl, stop_wl + step_wl, step_wl)
25
+ materials = ['Si', 'Si3N4', 'SiO2', 'AlN']
26
+
27
+ # --- Spectrum Simulation ---
28
+ def simulate_spectrum(layer_order, thickness_nm=100):
29
+ source = Source(wavelength=start_wl)
30
+ reflection_layer = Layer(n=1.0)
31
+ transmission_layer = Layer(material=Material("Si"))
32
+ try:
33
+ layers = [Layer(material=Material(m), thickness=thickness_nm * 1e-3) for m in layer_order]
34
+ stack = LayerStack(*layers, incident_layer=reflection_layer, transmission_layer=transmission_layer)
35
+ solver = Solver(stack, source, (1, 1))
36
+ result = solver.solve(wavelength=wavelengths)
37
+ return np.array(result['TTot']).tolist()
38
+ except Exception as e:
39
+ print(f"Simulation failed for {layer_order}: {e}")
40
+ return None
41
+
42
+ def cosine_similarity(vec1, vec2):
43
+ a, b = np.array(vec1), np.array(vec2)
44
+ return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
45
+
46
+ def find_best_permutation(materials, target_spectrum):
47
+ best_score, best_order = -1, None
48
+ for order in itertools.permutations(materials, 4):
49
+ spectrum = simulate_spectrum(order)
50
+ if spectrum is None:
51
+ continue
52
+ score = cosine_similarity(spectrum, target_spectrum)
53
+ if score > best_score:
54
+ best_score, best_order = score, order
55
+ return {
56
+ "best_order": list(best_order),
57
+ "cosine_score": float(best_score)
58
+ }
59
+
60
+ def run_agent_with_spectrum(target_spectrum):
61
+ tools = [{
62
+ "type": "function",
63
+ "function": {
64
+ "name": "find_best_permutation",
65
+ "description": "Find best layer order to match a transmission spectrum",
66
+ "parameters": {
67
+ "type": "object",
68
+ "properties": {
69
+ "materials": {"type": "array", "items": {"type": "string"}},
70
+ "target_spectrum": {"type": "array", "items": {"type": "number"}}
71
+ },
72
+ "required": ["materials", "target_spectrum"]
73
+ }
74
+ }
75
+ }]
76
+ messages = [
77
+ {"role": "system", "content": "You are a simulation agent that finds the best optical stack to match a target spectrum."},
78
+ {"role": "user", "content": f"Match this transmission spectrum with a 4-layer stack of Si, Si3N4, SiO2, AlN:\n{target_spectrum}"}
79
+ ]
80
+ try:
81
+ response = openai.chat.completions.create(
82
+ model="gpt-4o",
83
+ messages=messages,
84
+ tools=tools,
85
+ tool_choice={"type": "function", "function": {"name": "find_best_permutation"}}
86
+ )
87
+ tool_call = response.choices[0].message.tool_calls[0]
88
+ args = json.loads(tool_call.function.arguments)
89
+ result = find_best_permutation(**args)
90
+ predicted_spectrum = simulate_spectrum(result["best_order"])
91
+ return {
92
+ "true_target": target_spectrum,
93
+ "predicted_spectrum": predicted_spectrum,
94
+ "result": result,
95
+ "tool_call": {
96
+ "function": tool_call.function.name,
97
+ "arguments": args
98
+ },
99
+ "raw_response": response.model_dump(),
100
+ "system_prompt": messages[0]["content"],
101
+ "user_prompt": messages[1]["content"]
102
+ }
103
+ except Exception as e:
104
+ return {
105
+ "true_target": target_spectrum,
106
+ "predicted_spectrum": None,
107
+ "result": find_best_permutation(materials, target_spectrum),
108
+ "tool_call": None,
109
+ "raw_response": {"error": str(e)},
110
+ "system_prompt": messages[0]["content"],
111
+ "user_prompt": messages[1]["content"]
112
+ }
113
+
114
+ def plot_spectra(wavelengths, target, predicted):
115
+ fig, ax = plt.subplots(figsize=(6, 4))
116
+ ax.plot(wavelengths, target, label="Target Spectrum", color="blue")
117
+ if predicted:
118
+ ax.plot(wavelengths, predicted, label="Predicted Spectrum", color="red", linestyle="--")
119
+ ax.set_xlabel("Wavelength (µm)")
120
+ ax.set_ylabel("Transmission")
121
+ ax.set_title("Spectrum Comparison")
122
+ ax.grid(True)
123
+ ax.legend()
124
+ return fig
125
+
126
+ with gr.Blocks(title="Optical Thin-Film Stack AI Agent") as demo:
127
+ gr.Markdown("""
128
+ # 🧠 Optical Thin-Film Stack AI Agent
129
+
130
+ This interactive demo shows an **AI agent using a physics-based simulator (RCWA)** to solve an inverse optics problem.
131
+ The AI agent calls RCWA to **recover the correct material ordering** of a thin-film stack by matching its optical transmission spectrum to a given input.
132
+
133
+ ---
134
+ ### ��️ Materials in the Stack: **Si** (high-index semiconductor), **Si₃N₄** (medium-index dielectric), **SiO₂** (low-index glass), **AlN** (wide-bandgap insulating ceramic)
135
+ ---
136
+ """)
137
+
138
+ gr.Markdown("""
139
+ ## 🔍 What's Happening Under the Hood
140
+
141
+ 1. A **random 4-layer material stack** is generated from the materials above, where each material has a thickness of 100nm.
142
+ 2. We simulate its **transmission spectrum** using **RCWA (Rigorous Coupled-Wave Analysis)** — a gold-standard method in computational optics.
143
+ 3. The AI agent receives this spectrum and is asked: _\"What material order would produce this response?\"_
144
+ 4. The AI agent invokes the tool `find_best_permutation(...)` — triggering a brute-force search using RCWA over all possible material orders.
145
+ 5. The best match is returned, and we show both spectra and a cosine similarity score.
146
+
147
+ > 🧠 This isn't prompt-tuning. This is **agentic AI**, invoking a **verifiable physical simulator** as a tool.
148
+ """)
149
+
150
+ run_btn = gr.Button("🎲 Generate & Run")
151
+ true_order_box = gr.Textbox(label="True Layer Order For the 4 materials")
152
+ system_box = gr.Textbox(label="System Message to AI Agent", lines=2)
153
+ prompt_box = gr.Textbox(label="User Prompt to AI Agent", lines=4)
154
+ pred_order_box = gr.Textbox(label="AI Agent Predicted Layer Order")
155
+ score_box = gr.Textbox(label="Cosine Similarity")
156
+ plot_output = gr.Plot(label="Target vs Predicted Spectrum")
157
+ tool_output = gr.Textbox(label="Tool Call", lines=6)
158
+ raw_output = gr.Textbox(label="Raw GPT Response", lines=10)
159
+
160
+ def random_run():
161
+ true_order = random.sample(materials, 4)
162
+ spectrum = simulate_spectrum(true_order)
163
+ if spectrum is None:
164
+ return "Simulation failed", "", "", "", "", None, "", ""
165
+ result = run_agent_with_spectrum(spectrum)
166
+ plot = plot_spectra(wavelengths, spectrum, result["predicted_spectrum"])
167
+ return (
168
+ ", ".join(true_order),
169
+ result["system_prompt"],
170
+ result["user_prompt"],
171
+ ", ".join(result["result"]["best_order"]),
172
+ round(result["result"]["cosine_score"], 5),
173
+ plot,
174
+ json.dumps(result["tool_call"], indent=2),
175
+ json.dumps(result["raw_response"], indent=2)
176
+ )
177
+
178
+ run_btn.click(fn=random_run, inputs=[], outputs=[
179
+ true_order_box,
180
+ system_box,
181
+ prompt_box,
182
+ pred_order_box,
183
+ score_box,
184
+ plot_output,
185
+ tool_output,
186
+ raw_output
187
+ ])
188
+
189
+ if __name__ == "__main__":
190
+ demo.launch()