import torch import torch.nn as nn import torch.nn.functional as F class EmotionRegression(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, output_dim, dropout=0.5): super(EmotionRegression, self).__init__() #input_dim = args[0] #hidden_dim = args[1] #num_layers = args[2] #output_dim = args[3] #p = kwargs.get("dropout", 0.5) self.fc=nn.ModuleList([ nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.LayerNorm(hidden_dim), nn.ReLU(), nn.Dropout(dropout) ) ]) for lidx in range(num_layers-1): self.fc.append( nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.LayerNorm(hidden_dim), nn.ReLU(), nn.Dropout(dropout) ) ) self.out = nn.Sequential( nn.Linear(hidden_dim, output_dim) ) self.inp_drop = nn.Dropout(dropout) def get_repr(self, x): h = self.inp_drop(x) for lidx, fc in enumerate(self.fc): h=fc(h) return h def forward(self, x): h=self.get_repr(x) result = self.out(h) return result