anonymoussubmitter222
first commit
d081411
# -*- coding: utf-8 -*-
import os
import sys
import torch
import logging
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main
from hyperpyyaml import load_hyperpyyaml
from pathlib import Path
import torchaudio.transforms as T
from cv_train import ASRCV
import torchaudio
import numpy as np
import kenlm
from pyctcdecode import build_ctcdecoder
import re
from torch.nn.utils.rnn import pad_sequence
import torch.optim as optim
import torch.nn as nn
# Commented out IPython magic to ensure Python compatibility.
hparams_file, run_opts, overrides = sb.parse_arguments(["hparams/train_semi.yaml"])
# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# Dataset prep (parsing Librispeech)
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions."""
# 1. Define datasets
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
)
if hparams["sorting"] == "ascending":
# we sort training data to speed up training and get better results.
train_data = train_data.filtered_sorted(
sort_key="duration",
key_max_value={"duration": hparams["avoid_if_longer_than"]},
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["dataloader_options"]["shuffle"] = False
elif hparams["sorting"] == "descending":
train_data = train_data.filtered_sorted(
sort_key="duration",
reverse=True,
key_max_value={"duration": hparams["avoid_if_longer_than"]},
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["dataloader_options"]["shuffle"] = False
elif hparams["sorting"] == "random":
pass
else:
raise NotImplementedError(
"sorting must be random, ascending or descending"
)
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
)
# We also sort the validation data so it is faster to validate
valid_data = valid_data.filtered_sorted(sort_key="duration")
test_datasets = {}
for csv_file in hparams["test_csv"]:
name = Path(csv_file).stem
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=csv_file, replacements={"data_root": data_folder}
)
test_datasets[name] = test_datasets[name].filtered_sorted(
sort_key="duration"
)
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("wav")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(wav):
info = torchaudio.info(wav)
sig = sb.dataio.dataio.read_audio(wav)
if len(sig.shape)>1 :
sig = torch.mean(sig, dim=1)
resampled = torchaudio.transforms.Resample(
info.sample_rate, hparams["sample_rate"],
)(sig)
return resampled
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
label_encoder = sb.dataio.encoder.CTCTextEncoder()
# 3. Define text pipeline:
@sb.utils.data_pipeline.takes("wrd")
@sb.utils.data_pipeline.provides(
"wrd", "char_list", "tokens_list", "tokens"
)
def text_pipeline(wrd):
yield wrd
char_list = list(wrd)
yield char_list
tokens_list = label_encoder.encode_sequence(char_list)
yield tokens_list
tokens = torch.LongTensor(tokens_list)
yield tokens
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
special_labels = {
"blank_label": hparams["blank_index"],
"unk_label": hparams["unk_index"]
}
label_encoder.load_or_create(
path=lab_enc_file,
from_didatasets=[train_data],
output_key="char_list",
special_labels=special_labels,
sequence_input=True,
)
# 4. Set output:
sb.dataio.dataset.set_output_keys(
datasets, ["id", "sig", "wrd", "char_list", "tokens"],
)
return train_data, valid_data,test_datasets, label_encoder
class ASR(sb.core.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
wavs, wav_lens = batch.sig
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
if stage == sb.Stage.TRAIN:
if hasattr(self.hparams, "augmentation"):
wavs = self.hparams.augmentation(wavs, wav_lens)
# Forward pass
feats = self.modules.wav2vec2(wavs, wav_lens)
x = self.modules.enc(feats)
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
return p_ctc, wav_lens
def custom_encode(self,wavs,wav_lens) :
wavs = wavs.to(self.device)
if(wav_lens is not None): wav_lens.to(self.device)
feats = self.modules.wav2vec2(wavs, wav_lens)
x = self.modules.enc(feats)
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
return feats,p_ctc
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC) given predictions and targets."""
p_ctc, wav_lens = predictions
ids = batch.id
tokens, tokens_lens = batch.tokens
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
if stage != sb.Stage.TRAIN:
predicted_tokens = sb.decoders.ctc_greedy_decode(
p_ctc, wav_lens, blank_id=self.hparams.blank_index
)
# Decode token terms to words
if self.hparams.use_language_modelling:
predicted_words = []
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
else:
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
# Convert indices to words
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
should_step = self.step % self.grad_accumulation_factor == 0
# Managing automatic mixed precision
# TOFIX: CTC fine-tuning currently is unstable
# This is certainly due to CTC being done in fp16 instead of fp32
if self.auto_mix_prec:
with torch.cuda.amp.autocast():
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
self.scaler.scale(
loss / self.grad_accumulation_factor
).backward()
if should_step:
if not self.hparams.wav2vec2.freeze:
self.scaler.unscale_(self.wav2vec_optimizer)
self.scaler.unscale_(self.model_optimizer)
if self.check_gradients(loss):
if not self.hparams.wav2vec2.freeze:
if self.optimizer_step >= self.hparams.warmup_steps:
self.scaler.step(self.wav2vec_optimizer)
self.scaler.step(self.model_optimizer)
self.scaler.update()
self.zero_grad()
self.optimizer_step += 1
else:
# This is mandatory because HF models have a weird behavior with DDP
# on the forward pass
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
(loss / self.grad_accumulation_factor).backward()
if should_step:
if self.check_gradients(loss):
if not self.hparams.wav2vec2.freeze:
if self.optimizer_step >= self.hparams.warmup_steps:
self.wav2vec_optimizer.step()
self.model_optimizer.step()
self.zero_grad()
self.optimizer_step += 1
self.on_fit_batch_end(batch, outputs, loss, should_step)
return loss.detach().cpu()
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
predictions = self.compute_forward(batch, stage=stage)
with torch.no_grad():
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
stage_stats["loss"]
)
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
stage_stats["loss"]
)
sb.nnet.schedulers.update_learning_rate(
self.model_optimizer, new_lr_model
)
if not self.hparams.wav2vec2.freeze:
sb.nnet.schedulers.update_learning_rate(
self.wav2vec_optimizer, new_lr_wav2vec
)
self.hparams.train_logger.log_stats(
stats_meta={
"epoch": epoch,
"lr_model": old_lr_model,
"lr_wav2vec": old_lr_wav2vec,
},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
def init_optimizers(self):
"Initializes the wav2vec2 optimizer and model optimizer"
# If the wav2vec encoder is unfrozen, we create the optimizer
if not self.hparams.wav2vec2.freeze:
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
self.modules.wav2vec2.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable(
"wav2vec_opt", self.wav2vec_optimizer
)
self.model_optimizer = self.hparams.model_opt_class(
self.hparams.model.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
def zero_grad(self, set_to_none=False):
if not self.hparams.wav2vec2.freeze:
self.wav2vec_optimizer.zero_grad(set_to_none)
self.model_optimizer.zero_grad(set_to_none)
from speechbrain.pretrained import EncoderASR,EncoderDecoderASR
french_asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr").cuda()
cvhparams_file, cvrun_opts, cvoverrides = sb.parse_arguments(["en_cv.yaml"])
with open(cvhparams_file) as cvfin:
cvhparams = load_hyperpyyaml(cvfin, cvoverrides)
english_asr_model = ASRCV(
modules=cvhparams["modules"],
hparams=cvhparams,
run_opts=cvrun_opts,
checkpointer=cvhparams["checkpointer"],
)
english_asr_model.checkpointer.recover_if_possible()
asr_brain = ASR(
modules=hparams["modules"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
asr_brain.checkpointer.recover_if_possible()
asr_brain.modules.eval()
english_asr_model.modules.eval()
french_asr_model.mods.eval()
# Commented out IPython magic to ensure Python compatibility.
# %ls
#UTILS FUNCTIOJNS
def get_size_dimensions(arr):
size_dimensions = []
while isinstance(arr, list):
size_dimensions.append(len(arr))
arr = arr[0]
return size_dimensions
def scale_array(batch,n):
scaled_batch = []
for array in batch:
if(n < len(array)): raise ValueError("Cannot scale Array down")
repeat = round(n/len(array))+1
scaled_length_array= []
for i in array:
for j in range(repeat) :
if(len(scaled_length_array) == n): break
scaled_length_array.append(i)
scaled_batch.append(scaled_length_array)
return torch.tensor(scaled_batch)
def load_paths(wavs_path):
waveforms = []
for path in wavs_path :
waveform, _ = torchaudio.load(path)
waveforms.append(waveform.squeeze(0))
# normalize array length to the bigger arrays by pading with 0's
padded_arrays = pad_sequence(waveforms, batch_first=True)
return torch.tensor(padded_arrays)
device = 'cuda'
verbose = 0
#FLOW LEVEL FUNCTIONS
def merge_strategy(embeddings1, embeddings2, embeddings3,post1, post2,post3):
post1 = post1.to(device)
post2 = post2.to(device)
post3 = post3.to(device)
embeddings1 = embeddings1.to(device)
embeddings2 = embeddings2.to(device)
embeddings3 = embeddings3.to(device)
posteriograms_merged = torch.cat((post1,post2,post3),dim=2)
embeddings_merged = torch.cat((embeddings1,embeddings2,embeddings3),dim=2)
if(verbose !=0):
print('MERGED POST ',posteriograms_merged.shape)
print('MERGED emb ',embeddings_merged.shape)
return torch.cat((posteriograms_merged,embeddings_merged),dim=2).to(device)
def decode(model,wavs,wav_lens):
with torch.no_grad():
wav_lens = wav_lens.to(model.device)
encoder_out = model.encode_batch(wavs, wav_lens)
predictions = model.decoding_function(encoder_out, wav_lens)
return predictions
def middle_layer(batch, lens):
tn_embeddings, tn_posteriogram = asr_brain.custom_encode(batch,None)
fr_embeddings = french_asr_model.mods.encoder.wav2vec2(batch)
fr_posteriogram =french_asr_model.encode_batch(batch,lens)
en_embeddings = english_asr_model.modules.wav2vec2(batch, lens)
x = english_asr_model.modules.enc(en_embeddings)
en_posteriogram = english_asr_model.modules.ctc_lin(x)
#scores, en_posteriogram = english_asr_model.mods.decoder(en_embeddings ,lens)
if(verbose !=0):
print('[EMBEDDINGS] FR:',fr_embeddings.shape, "EN:",en_embeddings.shape, "TN:", tn_embeddings.shape)
print('[POSTERIOGRAM] FR:',fr_posteriogram.shape, "EN:",en_posteriogram.shape,"TN:",tn_posteriogram.shape)
bilangual_sample = merge_strategy(fr_embeddings,en_embeddings,tn_embeddings,fr_posteriogram,en_posteriogram,tn_posteriogram)
return bilangual_sample
class Mixer(sb.core.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
wavs, wav_lens = batch.sig
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
if stage == sb.Stage.TRAIN:
if hasattr(self.hparams, "augmentation"):
wavs = self.hparams.augmentation(wavs, wav_lens)
multi_langual_feats = middle_layer(wavs, wav_lens)
multi_langual_feats= multi_langual_feats.to(device)
feats, _ = self.modules.enc(multi_langual_feats)
logits = self.modules.ctc_lin(feats)
p_ctc = self.hparams.log_softmax(logits)
if stage!= sb.Stage.TRAIN:
p_tokens = sb.decoders.ctc_greedy_decode(
p_ctc, wav_lens, blank_id=self.hparams.blank_index
)
else :
p_tokens = None
return p_ctc, wav_lens, p_tokens
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC) given predictions and targets."""
p_ctc, wav_lens , predicted_tokens= predictions
ids = batch.id
tokens, tokens_lens = batch.tokens
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
if stage == sb.Stage.VALID:
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
if stage ==sb.Stage.TEST :
if self.hparams.language_modelling:
predicted_words = []
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
else :
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
should_step = self.step % self.grad_accumulation_factor == 0
# Managing automatic mixed precision
# TOFIX: CTC fine-tuning currently is unstable
# This is certainly due to CTC being done in fp16 instead of fp32
if self.auto_mix_prec:
with torch.cuda.amp.autocast():
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
self.scaler.scale(
loss / self.grad_accumulation_factor
).backward()
if should_step:
self.scaler.unscale_(self.model_optimizer)
if self.check_gradients(loss):
self.scaler.step(self.model_optimizer)
self.scaler.update()
self.zero_grad()
self.optimizer_step += 1
else:
# This is mandatory because HF models have a weird behavior with DDP
# on the forward pass
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
(loss / self.grad_accumulation_factor).backward()
if should_step:
if self.check_gradients(loss):
self.model_optimizer.step()
self.zero_grad()
self.optimizer_step += 1
self.on_fit_batch_end(batch, outputs, loss, should_step)
return loss.detach().cpu()
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
predictions = self.compute_forward(batch, stage=stage)
with torch.no_grad():
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
stage_stats["loss"]
)
sb.nnet.schedulers.update_learning_rate(
self.model_optimizer, new_lr_model
)
self.hparams.train_logger.log_stats(
stats_meta={
"epoch": epoch,
"lr_model": old_lr_model,
},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
def init_optimizers(self):
self.model_optimizer = self.hparams.model_opt_class(
self.hparams.model.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
def zero_grad(self, set_to_none=False):
self.model_optimizer.zero_grad(set_to_none)
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
def read_labels_file(labels_file):
with open(labels_file, "r",encoding="utf-8") as lf:
lines = lf.read().splitlines()
division = "==="
numbers = {}
for line in lines :
if division in line :
break
string, number = line.split("=>")
number = int(number)
string = string[1:-2]
numbers[number] = string
return [numbers[x] for x in range(len(numbers))]
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(
hparams
)
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
labels = [""] + labels[1:-1] + ["1"]
if hparams["language_modelling"]:
decoder = build_ctcdecoder(
labels,
kenlm_model_path=hparams["ngram_lm_path"], # either .arpa or .bin file
alpha=0.5, # tuned on a val set
beta=1, # tuned on a val set
)
mixer = Mixer(
modules=hparams["modules"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
mixer.tokenizer = label_encoder
mixer.fit(
mixer.hparams.epoch_counter,
train_data,
valid_data,
train_loader_kwargs=hparams["dataloader_options"],
valid_loader_kwargs=hparams["test_dataloader_options"],
)
print(test_datasets.keys())
for k in test_datasets.keys(): # keys are test_clean, test_other etc
mixer.hparams.wer_file = os.path.join(
hparams["output_folder"], "wer_{}.txt".format(k)
)
mixer.evaluate(
test_datasets[k], test_loader_kwargs=hparams["test_dataloader_options"]
)