Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
import sys | |
import torch | |
import logging | |
import speechbrain as sb | |
from pathlib import Path | |
import os | |
import torchaudio | |
from hyperpyyaml import load_hyperpyyaml | |
from speechbrain.tokenizers.SentencePiece import SentencePiece | |
from speechbrain.utils.data_utils import undo_padding | |
from speechbrain.utils.distributed import run_on_main | |
"""Recipe for training a sequence-to-sequence ASR system with CommonVoice. | |
The system employs a wav2vec2 encoder and a CTC decoder. | |
Decoding is performed with greedy decoding (will be extended to beam search). | |
To run this recipe, do the following: | |
> python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml | |
With the default hyperparameters, the system employs a pretrained wav2vec2 encoder. | |
The wav2vec2 model is pretrained following the model given in the hprams file. | |
It may be dependent on the language. | |
The neural network is trained with CTC on sub-word units estimated with | |
Byte Pairwise Encoding (BPE). | |
The experiment file is flexible enough to support a large variety of | |
different systems. By properly changing the parameter files, you can try | |
different encoders, decoders, tokens (e.g, characters instead of BPE), | |
training languages (all CommonVoice languages), and many | |
other possible variations. | |
Authors | |
* Titouan Parcollet 2021 | |
""" | |
logger = logging.getLogger(__name__) | |
# Define training procedure | |
class ASR(sb.core.Brain): | |
def compute_forward(self, batch, stage): | |
"""Forward computations from the waveform batches to the output probabilities.""" | |
batch = batch.to(self.device) | |
wavs, wav_lens = batch.sig | |
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) | |
if stage == sb.Stage.TRAIN: | |
if hasattr(self.hparams, "augmentation"): | |
wavs = self.hparams.augmentation(wavs, wav_lens) | |
# Forward pass | |
feats = self.modules.wav2vec2(wavs, wav_lens) | |
x = self.modules.enc(feats) | |
logits = self.modules.ctc_lin(x) | |
p_ctc = self.hparams.log_softmax(logits) | |
return p_ctc, wav_lens | |
def compute_objectives(self, predictions, batch, stage): | |
"""Computes the loss (CTC) given predictions and targets.""" | |
p_ctc, wav_lens = predictions | |
ids = batch.id | |
tokens, tokens_lens = batch.tokens | |
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens) | |
if stage != sb.Stage.TRAIN: | |
predicted_tokens = sb.decoders.ctc_greedy_decode( | |
p_ctc, wav_lens, blank_id=self.hparams.blank_index | |
) | |
# Decode token terms to words | |
if self.hparams.use_language_modelling: | |
predicted_words = [] | |
for logs in p_ctc: | |
text = decoder.decode(logs.detach().cpu().numpy()) | |
predicted_words.append(text.split(" ")) | |
else: | |
predicted_words = [ | |
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ") | |
for utt_seq in predicted_tokens | |
] | |
# Convert indices to words | |
target_words = [wrd.split(" ") for wrd in batch.wrd] | |
self.wer_metric.append(ids, predicted_words, target_words) | |
self.cer_metric.append(ids, predicted_words, target_words) | |
return loss | |
def fit_batch(self, batch): | |
"""Train the parameters given a single batch in input""" | |
should_step = self.step % self.grad_accumulation_factor == 0 | |
# Managing automatic mixed precision | |
# TOFIX: CTC fine-tuning currently is unstable | |
# This is certainly due to CTC being done in fp16 instead of fp32 | |
if self.auto_mix_prec: | |
with torch.cuda.amp.autocast(): | |
with self.no_sync(): | |
outputs = self.compute_forward(batch, sb.Stage.TRAIN) | |
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN) | |
with self.no_sync(not should_step): | |
self.scaler.scale( | |
loss / self.grad_accumulation_factor | |
).backward() | |
if should_step: | |
if not self.hparams.wav2vec2.freeze: | |
self.scaler.unscale_(self.wav2vec_optimizer) | |
self.scaler.unscale_(self.model_optimizer) | |
if self.check_gradients(loss): | |
if not self.hparams.wav2vec2.freeze: | |
if self.optimizer_step >= self.hparams.warmup_steps: | |
self.scaler.step(self.wav2vec_optimizer) | |
self.scaler.step(self.model_optimizer) | |
self.scaler.update() | |
self.zero_grad() | |
self.optimizer_step += 1 | |
else: | |
# This is mandatory because HF models have a weird behavior with DDP | |
# on the forward pass | |
with self.no_sync(): | |
outputs = self.compute_forward(batch, sb.Stage.TRAIN) | |
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN) | |
with self.no_sync(not should_step): | |
(loss / self.grad_accumulation_factor).backward() | |
if should_step: | |
if self.check_gradients(loss): | |
if not self.hparams.wav2vec2.freeze: | |
if self.optimizer_step >= self.hparams.warmup_steps: | |
self.wav2vec_optimizer.step() | |
self.model_optimizer.step() | |
self.zero_grad() | |
self.optimizer_step += 1 | |
self.on_fit_batch_end(batch, outputs, loss, should_step) | |
return loss.detach().cpu() | |
def evaluate_batch(self, batch, stage): | |
"""Computations needed for validation/test batches""" | |
predictions = self.compute_forward(batch, stage=stage) | |
with torch.no_grad(): | |
loss = self.compute_objectives(predictions, batch, stage=stage) | |
return loss.detach() | |
def on_stage_start(self, stage, epoch): | |
"""Gets called at the beginning of each epoch""" | |
if stage != sb.Stage.TRAIN: | |
self.cer_metric = self.hparams.cer_computer() | |
self.wer_metric = self.hparams.error_rate_computer() | |
def on_stage_end(self, stage, stage_loss, epoch): | |
"""Gets called at the end of an epoch.""" | |
# Compute/store important stats | |
stage_stats = {"loss": stage_loss} | |
if stage == sb.Stage.TRAIN: | |
self.train_stats = stage_stats | |
else: | |
stage_stats["CER"] = self.cer_metric.summarize("error_rate") | |
stage_stats["WER"] = self.wer_metric.summarize("error_rate") | |
# Perform end-of-iteration things, like annealing, logging, etc. | |
if stage == sb.Stage.VALID: | |
old_lr_model, new_lr_model = self.hparams.lr_annealing_model( | |
stage_stats["loss"] | |
) | |
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec( | |
stage_stats["loss"] | |
) | |
sb.nnet.schedulers.update_learning_rate( | |
self.model_optimizer, new_lr_model | |
) | |
if not self.hparams.wav2vec2.freeze: | |
sb.nnet.schedulers.update_learning_rate( | |
self.wav2vec_optimizer, new_lr_wav2vec | |
) | |
self.hparams.train_logger.log_stats( | |
stats_meta={ | |
"epoch": epoch, | |
"lr_model": old_lr_model, | |
"lr_wav2vec": old_lr_wav2vec, | |
}, | |
train_stats=self.train_stats, | |
valid_stats=stage_stats, | |
) | |
self.checkpointer.save_and_keep_only( | |
meta={"WER": stage_stats["WER"]}, min_keys=["WER"], | |
) | |
elif stage == sb.Stage.TEST: | |
self.hparams.train_logger.log_stats( | |
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current}, | |
test_stats=stage_stats, | |
) | |
with open(self.hparams.wer_file, "w") as w: | |
self.wer_metric.write_stats(w) | |
def init_optimizers(self): | |
"Initializes the wav2vec2 optimizer and model optimizer" | |
# If the wav2vec encoder is unfrozen, we create the optimizer | |
if not self.hparams.wav2vec2.freeze: | |
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class( | |
self.modules.wav2vec2.parameters() | |
) | |
if self.checkpointer is not None: | |
self.checkpointer.add_recoverable( | |
"wav2vec_opt", self.wav2vec_optimizer | |
) | |
self.model_optimizer = self.hparams.model_opt_class( | |
self.hparams.model.parameters() | |
) | |
if self.checkpointer is not None: | |
self.checkpointer.add_recoverable("modelopt", self.model_optimizer) | |
def zero_grad(self, set_to_none=False): | |
if not self.hparams.wav2vec2.freeze: | |
self.wav2vec_optimizer.zero_grad(set_to_none) | |
self.model_optimizer.zero_grad(set_to_none) | |
# Define custom data procedure | |
def dataio_prepare(hparams): | |
"""This function prepares the datasets to be used in the brain class. | |
It also defines the data processing pipeline through user-defined functions.""" | |
# 1. Define datasets | |
data_folder = hparams["data_folder"] | |
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv( | |
csv_path=hparams["train_csv"], replacements={"data_root": data_folder}, | |
) | |
if hparams["sorting"] == "ascending": | |
# we sort training data to speed up training and get better results. | |
train_data = train_data.filtered_sorted( | |
sort_key="duration", | |
key_max_value={"duration": hparams["avoid_if_longer_than"]}, | |
) | |
# when sorting do not shuffle in dataloader ! otherwise is pointless | |
hparams["dataloader_options"]["shuffle"] = False | |
elif hparams["sorting"] == "descending": | |
train_data = train_data.filtered_sorted( | |
sort_key="duration", | |
reverse=True, | |
key_max_value={"duration": hparams["avoid_if_longer_than"]}, | |
) | |
# when sorting do not shuffle in dataloader ! otherwise is pointless | |
hparams["dataloader_options"]["shuffle"] = False | |
elif hparams["sorting"] == "random": | |
pass | |
else: | |
raise NotImplementedError( | |
"sorting must be random, ascending or descending" | |
) | |
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv( | |
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder}, | |
) | |
# We also sort the validation data so it is faster to validate | |
valid_data = valid_data.filtered_sorted(sort_key="duration") | |
test_datasets = {} | |
for csv_file in hparams["test_csv"]: | |
name = Path(csv_file).stem | |
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv( | |
csv_path=csv_file, replacements={"data_root": data_folder} | |
) | |
test_datasets[name] = test_datasets[name].filtered_sorted( | |
sort_key="duration" | |
) | |
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()] | |
# 2. Define audio pipeline: | |
def audio_pipeline(wav): | |
info = torchaudio.info(wav) | |
sig = sb.dataio.dataio.read_audio(wav) | |
resampled = torchaudio.transforms.Resample( | |
info.sample_rate, hparams["sample_rate"], | |
)(sig) | |
return resampled | |
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline) | |
label_encoder = sb.dataio.encoder.CTCTextEncoder() | |
# 3. Define text pipeline: | |
def text_pipeline(wrd): | |
yield wrd | |
char_list = list(wrd) | |
yield char_list | |
tokens_list = label_encoder.encode_sequence(char_list) | |
yield tokens_list | |
tokens = torch.LongTensor(tokens_list) | |
yield tokens | |
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline) | |
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt") | |
special_labels = { | |
"blank_label": hparams["blank_index"], | |
"unk_label": hparams["unk_index"] | |
} | |
label_encoder.load_or_create( | |
path=lab_enc_file, | |
from_didatasets=[train_data], | |
output_key="char_list", | |
special_labels=special_labels, | |
sequence_input=True, | |
) | |
# 4. Set output: | |
sb.dataio.dataset.set_output_keys( | |
datasets, ["id", "sig", "wrd", "char_list", "tokens"], | |
) | |
return train_data, valid_data,test_datasets, label_encoder | |
if __name__ == "__main__": | |
# Load hyperparameters file with command-line overrides | |
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:]) | |
with open(hparams_file) as fin: | |
hparams = load_hyperpyyaml(fin, overrides) | |
# If --distributed_launch then | |
# create ddp_group with the right communication protocol | |
sb.utils.distributed.ddp_init_group(run_opts) | |
# Create experiment directory | |
sb.create_experiment_directory( | |
experiment_directory=hparams["output_folder"], | |
hyperparams_to_save=hparams_file, | |
overrides=overrides, | |
) | |
# Due to DDP, we do the preparation ONLY on the main python process | |
# Defining tokenizer and loading it | |
# Create the datasets objects as well as tokenization and encoding :-D | |
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(hparams) | |
if hparams["use_language_modelling"]: | |
print("using langauge_modeeling") | |
from pyctcdecode import build_ctcdecoder | |
ind2lab = label_encoder.ind2lab | |
print(ind2lab) | |
labels = [ind2lab[x] for x in range(len(ind2lab))] | |
labels = [""] + labels[1:-1] + ["1"] | |
# Replace the <blank> token with a blank character, needed for PyCTCdecode | |
print(labels) | |
decoder = build_ctcdecoder( | |
labels, | |
kenlm_model_path=hparams["ngram_lm_path"], # .arpa or .bin | |
alpha=0.5, # Default by KenLM | |
beta=1.0, # Default by KenLM | |
) | |
# Trainer initialization | |
asr_brain = ASR( | |
modules=hparams["modules"], | |
hparams=hparams, | |
run_opts=run_opts, | |
checkpointer=hparams["checkpointer"], | |
) | |
# Adding objects to trainer. | |
asr_brain.tokenizer = label_encoder | |
# Training | |
asr_brain.fit( | |
asr_brain.hparams.epoch_counter, | |
train_data, | |
valid_data, | |
train_loader_kwargs=hparams["dataloader_options"], | |
valid_loader_kwargs=hparams["test_dataloader_options"], | |
) | |
# Test | |
for k in test_datasets.keys(): # keys are test_clean, test_other etc | |
asr_brain.hparams.wer_file = os.path.join( | |
hparams["output_folder"], "wer_{}.txt".format(k) | |
) | |
asr_brain.evaluate( | |
test_datasets[k], test_loader_kwargs=hparams["test_dataloader_options"] | |
) | |