Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| import os | |
| import sys | |
| import torch | |
| import logging | |
| import speechbrain as sb | |
| from speechbrain.utils.distributed import run_on_main | |
| from hyperpyyaml import load_hyperpyyaml | |
| from pathlib import Path | |
| import torchaudio.transforms as T | |
| from cv_train import ASRCV | |
| import torchaudio | |
| import numpy as np | |
| import kenlm | |
| from pyctcdecode import build_ctcdecoder | |
| import re | |
| from torch.nn.utils.rnn import pad_sequence | |
| import torch.optim as optim | |
| import torch.nn as nn | |
| # Commented out IPython magic to ensure Python compatibility. | |
| hparams_file, run_opts, overrides = sb.parse_arguments(["hparams/train_semi.yaml"]) | |
| # If distributed_launch=True then | |
| # create ddp_group with the right communication protocol | |
| sb.utils.distributed.ddp_init_group(run_opts) | |
| with open(hparams_file) as fin: | |
| hparams = load_hyperpyyaml(fin, overrides) | |
| # Create experiment directory | |
| sb.create_experiment_directory( | |
| experiment_directory=hparams["output_folder"], | |
| hyperparams_to_save=hparams_file, | |
| overrides=overrides, | |
| ) | |
| # Dataset prep (parsing Librispeech) | |
| def dataio_prepare(hparams): | |
| """This function prepares the datasets to be used in the brain class. | |
| It also defines the data processing pipeline through user-defined functions.""" | |
| # 1. Define datasets | |
| data_folder = hparams["data_folder"] | |
| train_data = sb.dataio.dataset.DynamicItemDataset.from_csv( | |
| csv_path=hparams["train_csv"], replacements={"data_root": data_folder}, | |
| ) | |
| if hparams["sorting"] == "ascending": | |
| # we sort training data to speed up training and get better results. | |
| train_data = train_data.filtered_sorted( | |
| sort_key="duration", | |
| key_max_value={"duration": hparams["avoid_if_longer_than"]}, | |
| ) | |
| # when sorting do not shuffle in dataloader ! otherwise is pointless | |
| hparams["dataloader_options"]["shuffle"] = False | |
| elif hparams["sorting"] == "descending": | |
| train_data = train_data.filtered_sorted( | |
| sort_key="duration", | |
| reverse=True, | |
| key_max_value={"duration": hparams["avoid_if_longer_than"]}, | |
| ) | |
| # when sorting do not shuffle in dataloader ! otherwise is pointless | |
| hparams["dataloader_options"]["shuffle"] = False | |
| elif hparams["sorting"] == "random": | |
| pass | |
| else: | |
| raise NotImplementedError( | |
| "sorting must be random, ascending or descending" | |
| ) | |
| valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv( | |
| csv_path=hparams["valid_csv"], replacements={"data_root": data_folder}, | |
| ) | |
| # We also sort the validation data so it is faster to validate | |
| valid_data = valid_data.filtered_sorted(sort_key="duration") | |
| test_datasets = {} | |
| for csv_file in hparams["test_csv"]: | |
| name = Path(csv_file).stem | |
| test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv( | |
| csv_path=csv_file, replacements={"data_root": data_folder} | |
| ) | |
| test_datasets[name] = test_datasets[name].filtered_sorted( | |
| sort_key="duration" | |
| ) | |
| datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()] | |
| # 2. Define audio pipeline: | |
| def audio_pipeline(wav): | |
| info = torchaudio.info(wav) | |
| sig = sb.dataio.dataio.read_audio(wav) | |
| if len(sig.shape)>1 : | |
| sig = torch.mean(sig, dim=1) | |
| resampled = torchaudio.transforms.Resample( | |
| info.sample_rate, hparams["sample_rate"], | |
| )(sig) | |
| return resampled | |
| sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline) | |
| label_encoder = sb.dataio.encoder.CTCTextEncoder() | |
| # 3. Define text pipeline: | |
| def text_pipeline(wrd): | |
| yield wrd | |
| char_list = list(wrd) | |
| yield char_list | |
| tokens_list = label_encoder.encode_sequence(char_list) | |
| yield tokens_list | |
| tokens = torch.LongTensor(tokens_list) | |
| yield tokens | |
| sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline) | |
| lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt") | |
| special_labels = { | |
| "blank_label": hparams["blank_index"], | |
| "unk_label": hparams["unk_index"] | |
| } | |
| label_encoder.load_or_create( | |
| path=lab_enc_file, | |
| from_didatasets=[train_data], | |
| output_key="char_list", | |
| special_labels=special_labels, | |
| sequence_input=True, | |
| ) | |
| # 4. Set output: | |
| sb.dataio.dataset.set_output_keys( | |
| datasets, ["id", "sig", "wrd", "char_list", "tokens"], | |
| ) | |
| return train_data, valid_data,test_datasets, label_encoder | |
| class ASR(sb.core.Brain): | |
| def compute_forward(self, batch, stage): | |
| """Forward computations from the waveform batches to the output probabilities.""" | |
| batch = batch.to(self.device) | |
| wavs, wav_lens = batch.sig | |
| wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) | |
| if stage == sb.Stage.TRAIN: | |
| if hasattr(self.hparams, "augmentation"): | |
| wavs = self.hparams.augmentation(wavs, wav_lens) | |
| # Forward pass | |
| feats = self.modules.wav2vec2(wavs, wav_lens) | |
| x = self.modules.enc(feats) | |
| logits = self.modules.ctc_lin(x) | |
| p_ctc = self.hparams.log_softmax(logits) | |
| return p_ctc, wav_lens | |
| def custom_encode(self,wavs,wav_lens) : | |
| wavs = wavs.to(self.device) | |
| if(wav_lens is not None): wav_lens.to(self.device) | |
| feats = self.modules.wav2vec2(wavs, wav_lens) | |
| x = self.modules.enc(feats) | |
| logits = self.modules.ctc_lin(x) | |
| p_ctc = self.hparams.log_softmax(logits) | |
| return feats,p_ctc | |
| def compute_objectives(self, predictions, batch, stage): | |
| """Computes the loss (CTC) given predictions and targets.""" | |
| p_ctc, wav_lens = predictions | |
| ids = batch.id | |
| tokens, tokens_lens = batch.tokens | |
| loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens) | |
| if stage != sb.Stage.TRAIN: | |
| predicted_tokens = sb.decoders.ctc_greedy_decode( | |
| p_ctc, wav_lens, blank_id=self.hparams.blank_index | |
| ) | |
| # Decode token terms to words | |
| if self.hparams.use_language_modelling: | |
| predicted_words = [] | |
| for logs in p_ctc: | |
| text = decoder.decode(logs.detach().cpu().numpy()) | |
| predicted_words.append(text.split(" ")) | |
| else: | |
| predicted_words = [ | |
| "".join(self.tokenizer.decode_ndim(utt_seq)).split(" ") | |
| for utt_seq in predicted_tokens | |
| ] | |
| # Convert indices to words | |
| target_words = [wrd.split(" ") for wrd in batch.wrd] | |
| self.wer_metric.append(ids, predicted_words, target_words) | |
| self.cer_metric.append(ids, predicted_words, target_words) | |
| return loss | |
| def fit_batch(self, batch): | |
| """Train the parameters given a single batch in input""" | |
| should_step = self.step % self.grad_accumulation_factor == 0 | |
| # Managing automatic mixed precision | |
| # TOFIX: CTC fine-tuning currently is unstable | |
| # This is certainly due to CTC being done in fp16 instead of fp32 | |
| if self.auto_mix_prec: | |
| with torch.cuda.amp.autocast(): | |
| with self.no_sync(): | |
| outputs = self.compute_forward(batch, sb.Stage.TRAIN) | |
| loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN) | |
| with self.no_sync(not should_step): | |
| self.scaler.scale( | |
| loss / self.grad_accumulation_factor | |
| ).backward() | |
| if should_step: | |
| if not self.hparams.wav2vec2.freeze: | |
| self.scaler.unscale_(self.wav2vec_optimizer) | |
| self.scaler.unscale_(self.model_optimizer) | |
| if self.check_gradients(loss): | |
| if not self.hparams.wav2vec2.freeze: | |
| if self.optimizer_step >= self.hparams.warmup_steps: | |
| self.scaler.step(self.wav2vec_optimizer) | |
| self.scaler.step(self.model_optimizer) | |
| self.scaler.update() | |
| self.zero_grad() | |
| self.optimizer_step += 1 | |
| else: | |
| # This is mandatory because HF models have a weird behavior with DDP | |
| # on the forward pass | |
| with self.no_sync(): | |
| outputs = self.compute_forward(batch, sb.Stage.TRAIN) | |
| loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN) | |
| with self.no_sync(not should_step): | |
| (loss / self.grad_accumulation_factor).backward() | |
| if should_step: | |
| if self.check_gradients(loss): | |
| if not self.hparams.wav2vec2.freeze: | |
| if self.optimizer_step >= self.hparams.warmup_steps: | |
| self.wav2vec_optimizer.step() | |
| self.model_optimizer.step() | |
| self.zero_grad() | |
| self.optimizer_step += 1 | |
| self.on_fit_batch_end(batch, outputs, loss, should_step) | |
| return loss.detach().cpu() | |
| def evaluate_batch(self, batch, stage): | |
| """Computations needed for validation/test batches""" | |
| predictions = self.compute_forward(batch, stage=stage) | |
| with torch.no_grad(): | |
| loss = self.compute_objectives(predictions, batch, stage=stage) | |
| return loss.detach() | |
| def on_stage_start(self, stage, epoch): | |
| """Gets called at the beginning of each epoch""" | |
| if stage != sb.Stage.TRAIN: | |
| self.cer_metric = self.hparams.cer_computer() | |
| self.wer_metric = self.hparams.error_rate_computer() | |
| def on_stage_end(self, stage, stage_loss, epoch): | |
| """Gets called at the end of an epoch.""" | |
| # Compute/store important stats | |
| stage_stats = {"loss": stage_loss} | |
| if stage == sb.Stage.TRAIN: | |
| self.train_stats = stage_stats | |
| else: | |
| stage_stats["CER"] = self.cer_metric.summarize("error_rate") | |
| stage_stats["WER"] = self.wer_metric.summarize("error_rate") | |
| # Perform end-of-iteration things, like annealing, logging, etc. | |
| if stage == sb.Stage.VALID: | |
| old_lr_model, new_lr_model = self.hparams.lr_annealing_model( | |
| stage_stats["loss"] | |
| ) | |
| old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec( | |
| stage_stats["loss"] | |
| ) | |
| sb.nnet.schedulers.update_learning_rate( | |
| self.model_optimizer, new_lr_model | |
| ) | |
| if not self.hparams.wav2vec2.freeze: | |
| sb.nnet.schedulers.update_learning_rate( | |
| self.wav2vec_optimizer, new_lr_wav2vec | |
| ) | |
| self.hparams.train_logger.log_stats( | |
| stats_meta={ | |
| "epoch": epoch, | |
| "lr_model": old_lr_model, | |
| "lr_wav2vec": old_lr_wav2vec, | |
| }, | |
| train_stats=self.train_stats, | |
| valid_stats=stage_stats, | |
| ) | |
| self.checkpointer.save_and_keep_only( | |
| meta={"WER": stage_stats["WER"]}, min_keys=["WER"], | |
| ) | |
| elif stage == sb.Stage.TEST: | |
| self.hparams.train_logger.log_stats( | |
| stats_meta={"Epoch loaded": self.hparams.epoch_counter.current}, | |
| test_stats=stage_stats, | |
| ) | |
| with open(self.hparams.wer_file, "w") as w: | |
| self.wer_metric.write_stats(w) | |
| def init_optimizers(self): | |
| "Initializes the wav2vec2 optimizer and model optimizer" | |
| # If the wav2vec encoder is unfrozen, we create the optimizer | |
| if not self.hparams.wav2vec2.freeze: | |
| self.wav2vec_optimizer = self.hparams.wav2vec_opt_class( | |
| self.modules.wav2vec2.parameters() | |
| ) | |
| if self.checkpointer is not None: | |
| self.checkpointer.add_recoverable( | |
| "wav2vec_opt", self.wav2vec_optimizer | |
| ) | |
| self.model_optimizer = self.hparams.model_opt_class( | |
| self.hparams.model.parameters() | |
| ) | |
| if self.checkpointer is not None: | |
| self.checkpointer.add_recoverable("modelopt", self.model_optimizer) | |
| def zero_grad(self, set_to_none=False): | |
| if not self.hparams.wav2vec2.freeze: | |
| self.wav2vec_optimizer.zero_grad(set_to_none) | |
| self.model_optimizer.zero_grad(set_to_none) | |
| from speechbrain.pretrained import EncoderASR,EncoderDecoderASR | |
| french_asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr").cuda() | |
| cvhparams_file, cvrun_opts, cvoverrides = sb.parse_arguments(["en_cv.yaml"]) | |
| with open(cvhparams_file) as cvfin: | |
| cvhparams = load_hyperpyyaml(cvfin, cvoverrides) | |
| english_asr_model = ASRCV( | |
| modules=cvhparams["modules"], | |
| hparams=cvhparams, | |
| run_opts=cvrun_opts, | |
| checkpointer=cvhparams["checkpointer"], | |
| ) | |
| english_asr_model.checkpointer.recover_if_possible() | |
| asr_brain = ASR( | |
| modules=hparams["modules"], | |
| hparams=hparams, | |
| run_opts=run_opts, | |
| checkpointer=hparams["checkpointer"], | |
| ) | |
| asr_brain.checkpointer.recover_if_possible() | |
| asr_brain.modules.eval() | |
| english_asr_model.modules.eval() | |
| french_asr_model.mods.eval() | |
| # Commented out IPython magic to ensure Python compatibility. | |
| # %ls | |
| #UTILS FUNCTIOJNS | |
| def get_size_dimensions(arr): | |
| size_dimensions = [] | |
| while isinstance(arr, list): | |
| size_dimensions.append(len(arr)) | |
| arr = arr[0] | |
| return size_dimensions | |
| def scale_array(batch,n): | |
| scaled_batch = [] | |
| for array in batch: | |
| if(n < len(array)): raise ValueError("Cannot scale Array down") | |
| repeat = round(n/len(array))+1 | |
| scaled_length_array= [] | |
| for i in array: | |
| for j in range(repeat) : | |
| if(len(scaled_length_array) == n): break | |
| scaled_length_array.append(i) | |
| scaled_batch.append(scaled_length_array) | |
| return torch.tensor(scaled_batch) | |
| def load_paths(wavs_path): | |
| waveforms = [] | |
| for path in wavs_path : | |
| waveform, _ = torchaudio.load(path) | |
| waveforms.append(waveform.squeeze(0)) | |
| # normalize array length to the bigger arrays by pading with 0's | |
| padded_arrays = pad_sequence(waveforms, batch_first=True) | |
| return torch.tensor(padded_arrays) | |
| device = 'cuda' | |
| verbose = 0 | |
| #FLOW LEVEL FUNCTIONS | |
| def merge_strategy(embeddings1, embeddings2, embeddings3,post1, post2,post3): | |
| post1 = post1.to(device) | |
| post2 = post2.to(device) | |
| post3 = post3.to(device) | |
| embeddings1 = embeddings1.to(device) | |
| embeddings2 = embeddings2.to(device) | |
| embeddings3 = embeddings3.to(device) | |
| posteriograms_merged = torch.cat((post1,post2,post3),dim=2) | |
| embeddings_merged = torch.cat((embeddings1,embeddings2,embeddings3),dim=2) | |
| if(verbose !=0): | |
| print('MERGED POST ',posteriograms_merged.shape) | |
| print('MERGED emb ',embeddings_merged.shape) | |
| return torch.cat((posteriograms_merged,embeddings_merged),dim=2).to(device) | |
| def decode(model,wavs,wav_lens): | |
| with torch.no_grad(): | |
| wav_lens = wav_lens.to(model.device) | |
| encoder_out = model.encode_batch(wavs, wav_lens) | |
| predictions = model.decoding_function(encoder_out, wav_lens) | |
| return predictions | |
| def middle_layer(batch, lens): | |
| tn_embeddings, tn_posteriogram = asr_brain.custom_encode(batch,None) | |
| fr_embeddings = french_asr_model.mods.encoder.wav2vec2(batch) | |
| fr_posteriogram =french_asr_model.encode_batch(batch,lens) | |
| en_embeddings = english_asr_model.modules.wav2vec2(batch, lens) | |
| x = english_asr_model.modules.enc(en_embeddings) | |
| en_posteriogram = english_asr_model.modules.ctc_lin(x) | |
| #scores, en_posteriogram = english_asr_model.mods.decoder(en_embeddings ,lens) | |
| if(verbose !=0): | |
| print('[EMBEDDINGS] FR:',fr_embeddings.shape, "EN:",en_embeddings.shape, "TN:", tn_embeddings.shape) | |
| print('[POSTERIOGRAM] FR:',fr_posteriogram.shape, "EN:",en_posteriogram.shape,"TN:",tn_posteriogram.shape) | |
| bilangual_sample = merge_strategy(fr_embeddings,en_embeddings,tn_embeddings,fr_posteriogram,en_posteriogram,tn_posteriogram) | |
| return bilangual_sample | |
| class Mixer(sb.core.Brain): | |
| def compute_forward(self, batch, stage): | |
| """Forward computations from the waveform batches to the output probabilities.""" | |
| wavs, wav_lens = batch.sig | |
| wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) | |
| if stage == sb.Stage.TRAIN: | |
| if hasattr(self.hparams, "augmentation"): | |
| wavs = self.hparams.augmentation(wavs, wav_lens) | |
| multi_langual_feats = middle_layer(wavs, wav_lens) | |
| multi_langual_feats= multi_langual_feats.to(device) | |
| feats, _ = self.modules.enc(multi_langual_feats) | |
| logits = self.modules.ctc_lin(feats) | |
| p_ctc = self.hparams.log_softmax(logits) | |
| if stage!= sb.Stage.TRAIN: | |
| p_tokens = sb.decoders.ctc_greedy_decode( | |
| p_ctc, wav_lens, blank_id=self.hparams.blank_index | |
| ) | |
| else : | |
| p_tokens = None | |
| return p_ctc, wav_lens, p_tokens | |
| def compute_objectives(self, predictions, batch, stage): | |
| """Computes the loss (CTC) given predictions and targets.""" | |
| p_ctc, wav_lens , predicted_tokens= predictions | |
| ids = batch.id | |
| tokens, tokens_lens = batch.tokens | |
| loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens) | |
| if stage == sb.Stage.VALID: | |
| predicted_words = [ | |
| "".join(self.tokenizer.decode_ndim(utt_seq)).split(" ") | |
| for utt_seq in predicted_tokens | |
| ] | |
| target_words = [wrd.split(" ") for wrd in batch.wrd] | |
| self.wer_metric.append(ids, predicted_words, target_words) | |
| self.cer_metric.append(ids, predicted_words, target_words) | |
| if stage ==sb.Stage.TEST : | |
| if self.hparams.language_modelling: | |
| predicted_words = [] | |
| for logs in p_ctc: | |
| text = decoder.decode(logs.detach().cpu().numpy()) | |
| predicted_words.append(text.split(" ")) | |
| else : | |
| predicted_words = [ | |
| "".join(self.tokenizer.decode_ndim(utt_seq)).split(" ") | |
| for utt_seq in predicted_tokens | |
| ] | |
| target_words = [wrd.split(" ") for wrd in batch.wrd] | |
| self.wer_metric.append(ids, predicted_words, target_words) | |
| self.cer_metric.append(ids, predicted_words, target_words) | |
| return loss | |
| def fit_batch(self, batch): | |
| """Train the parameters given a single batch in input""" | |
| should_step = self.step % self.grad_accumulation_factor == 0 | |
| # Managing automatic mixed precision | |
| # TOFIX: CTC fine-tuning currently is unstable | |
| # This is certainly due to CTC being done in fp16 instead of fp32 | |
| if self.auto_mix_prec: | |
| with torch.cuda.amp.autocast(): | |
| with self.no_sync(): | |
| outputs = self.compute_forward(batch, sb.Stage.TRAIN) | |
| loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN) | |
| with self.no_sync(not should_step): | |
| self.scaler.scale( | |
| loss / self.grad_accumulation_factor | |
| ).backward() | |
| if should_step: | |
| self.scaler.unscale_(self.model_optimizer) | |
| if self.check_gradients(loss): | |
| self.scaler.step(self.model_optimizer) | |
| self.scaler.update() | |
| self.zero_grad() | |
| self.optimizer_step += 1 | |
| else: | |
| # This is mandatory because HF models have a weird behavior with DDP | |
| # on the forward pass | |
| with self.no_sync(): | |
| outputs = self.compute_forward(batch, sb.Stage.TRAIN) | |
| loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN) | |
| with self.no_sync(not should_step): | |
| (loss / self.grad_accumulation_factor).backward() | |
| if should_step: | |
| if self.check_gradients(loss): | |
| self.model_optimizer.step() | |
| self.zero_grad() | |
| self.optimizer_step += 1 | |
| self.on_fit_batch_end(batch, outputs, loss, should_step) | |
| return loss.detach().cpu() | |
| def evaluate_batch(self, batch, stage): | |
| """Computations needed for validation/test batches""" | |
| predictions = self.compute_forward(batch, stage=stage) | |
| with torch.no_grad(): | |
| loss = self.compute_objectives(predictions, batch, stage=stage) | |
| return loss.detach() | |
| def on_stage_start(self, stage, epoch): | |
| """Gets called at the beginning of each epoch""" | |
| if stage != sb.Stage.TRAIN: | |
| self.cer_metric = self.hparams.cer_computer() | |
| self.wer_metric = self.hparams.error_rate_computer() | |
| def on_stage_end(self, stage, stage_loss, epoch): | |
| """Gets called at the end of an epoch.""" | |
| # Compute/store important stats | |
| stage_stats = {"loss": stage_loss} | |
| if stage == sb.Stage.TRAIN: | |
| self.train_stats = stage_stats | |
| else: | |
| stage_stats["CER"] = self.cer_metric.summarize("error_rate") | |
| stage_stats["WER"] = self.wer_metric.summarize("error_rate") | |
| # Perform end-of-iteration things, like annealing, logging, etc. | |
| if stage == sb.Stage.VALID: | |
| old_lr_model, new_lr_model = self.hparams.lr_annealing_model( | |
| stage_stats["loss"] | |
| ) | |
| sb.nnet.schedulers.update_learning_rate( | |
| self.model_optimizer, new_lr_model | |
| ) | |
| self.hparams.train_logger.log_stats( | |
| stats_meta={ | |
| "epoch": epoch, | |
| "lr_model": old_lr_model, | |
| }, | |
| train_stats=self.train_stats, | |
| valid_stats=stage_stats, | |
| ) | |
| self.checkpointer.save_and_keep_only( | |
| meta={"WER": stage_stats["WER"]}, min_keys=["WER"], | |
| ) | |
| elif stage == sb.Stage.TEST: | |
| self.hparams.train_logger.log_stats( | |
| stats_meta={"Epoch loaded": self.hparams.epoch_counter.current}, | |
| test_stats=stage_stats, | |
| ) | |
| with open(self.hparams.wer_file, "w") as w: | |
| self.wer_metric.write_stats(w) | |
| def init_optimizers(self): | |
| self.model_optimizer = self.hparams.model_opt_class( | |
| self.hparams.model.parameters() | |
| ) | |
| if self.checkpointer is not None: | |
| self.checkpointer.add_recoverable("modelopt", self.model_optimizer) | |
| def zero_grad(self, set_to_none=False): | |
| self.model_optimizer.zero_grad(set_to_none) | |
| hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:]) | |
| # If distributed_launch=True then | |
| # create ddp_group with the right communication protocol | |
| sb.utils.distributed.ddp_init_group(run_opts) | |
| with open(hparams_file) as fin: | |
| hparams = load_hyperpyyaml(fin, overrides) | |
| # Create experiment directory | |
| sb.create_experiment_directory( | |
| experiment_directory=hparams["output_folder"], | |
| hyperparams_to_save=hparams_file, | |
| overrides=overrides, | |
| ) | |
| def read_labels_file(labels_file): | |
| with open(labels_file, "r",encoding="utf-8") as lf: | |
| lines = lf.read().splitlines() | |
| division = "===" | |
| numbers = {} | |
| for line in lines : | |
| if division in line : | |
| break | |
| string, number = line.split("=>") | |
| number = int(number) | |
| string = string[1:-2] | |
| numbers[number] = string | |
| return [numbers[x] for x in range(len(numbers))] | |
| train_data, valid_data, test_datasets, label_encoder = dataio_prepare( | |
| hparams | |
| ) | |
| labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt")) | |
| labels = [""] + labels[1:-1] + ["1"] | |
| if hparams["language_modelling"]: | |
| decoder = build_ctcdecoder( | |
| labels, | |
| kenlm_model_path=hparams["ngram_lm_path"], # either .arpa or .bin file | |
| alpha=0.5, # tuned on a val set | |
| beta=1, # tuned on a val set | |
| ) | |
| mixer = Mixer( | |
| modules=hparams["modules"], | |
| hparams=hparams, | |
| run_opts=run_opts, | |
| checkpointer=hparams["checkpointer"], | |
| ) | |
| mixer.tokenizer = label_encoder | |
| mixer.fit( | |
| mixer.hparams.epoch_counter, | |
| train_data, | |
| valid_data, | |
| train_loader_kwargs=hparams["dataloader_options"], | |
| valid_loader_kwargs=hparams["test_dataloader_options"], | |
| ) | |
| print(test_datasets.keys()) | |
| for k in test_datasets.keys(): # keys are test_clean, test_other etc | |
| mixer.hparams.wer_file = os.path.join( | |
| hparams["output_folder"], "wer_{}.txt".format(k) | |
| ) | |
| mixer.evaluate( | |
| test_datasets[k], test_loader_kwargs=hparams["test_dataloader_options"] | |
| ) | |