adharinkar / app.py
Safwanahmad619's picture
Update app.py
aa14fca verified
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from transformers import pipeline
from datetime import datetime
import requests
from bs4 import BeautifulSoup
import feedparser
# ------------------- Initialize Models -------------------
sentiment_analyzer = pipeline("text-classification", model="ProsusAI/finbert")
news_summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ur-en")
# ------------------- Technical Analysis Functions -------------------
def calculate_rsi(data, window=14):
delta = data['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()
rs = gain / loss
return 100 - (100 / (1 + rs))
def calculate_macd(data, slow=26, fast=12, signal=9):
exp1 = data['Close'].ewm(span=fast, adjust=False).mean()
exp2 = data['Close'].ewm(span=slow, adjust=False).mean()
macd = exp1 - exp2
signal_line = macd.ewm(span=signal, adjust=False).mean()
return macd, signal_line
# ------------------- Data Fetching & Processing -------------------
def get_psx_data(ticker):
try:
stock = yf.Ticker(f"{ticker}.KA")
data = stock.history(period="1y")
if data.empty:
return None, "Invalid ticker or no data available"
# Calculate indicators
data['RSI'] = calculate_rsi(data)
data['MACD'], data['Signal'] = calculate_macd(data)
data['MA50'] = data['Close'].rolling(window=50).mean()
data['MA200'] = data['Close'].rolling(window=200).mean()
return data, None
except Exception as e:
return None, str(e)
# ------------------- News & Sentiment Analysis -------------------
def analyze_psx_news():
news_items = []
try:
feed = feedparser.parse("https://www.dawn.com/feeds/pakistan")
for entry in feed.entries[:5]: # Limit to 5 articles
try:
# Translate Urdu content to English
if any(char in entry.title for char in ['\u0600', '\u0800']): # Detect Urdu characters
translated = translator(entry.title)[0]['translation_text']
title = f"[URDU] {translated}"
else:
title = entry.title
# Analyze sentiment
sentiment = sentiment_analyzer(title)[0]
news_items.append({
'title': title,
'sentiment': sentiment['label'],
'score': sentiment['score'],
'link': entry.link
})
except:
continue
except:
pass
return news_items
# ------------------- Gradio Interface -------------------
def analyze_stock(ticker):
# Get stock data
data, error = get_psx_data(ticker)
if error:
return error, None, None, None
# Create price chart
fig = go.Figure()
fig.add_trace(go.Candlestick(x=data.index,
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'],
name='Price'))
fig.add_trace(go.Scatter(x=data.index, y=data['MA50'], line=dict(color='orange', width=1), name='MA50'))
fig.add_trace(go.Scatter(x=data.index, y=data['MA200'], line=dict(color='blue', width=1), name='MA200'))
fig.update_layout(title=f"{ticker} Technical Analysis", xaxis_rangeslider_visible=False)
# Generate signals
latest = data.iloc[-1]
rsi_signal = "Oversold" if latest['RSI'] < 30 else "Overbought" if latest['RSI'] > 70 else "Neutral"
macd_signal = "Bullish" if latest['MACD'] > latest['Signal'] else "Bearish"
# News analysis
news = analyze_psx_news()
news_html = "<h3>Market News & Sentiment</h3>"
for item in news:
news_html += f"""
<div style="margin-bottom: 15px; padding: 10px; border: 1px solid #eee; border-radius: 5px;">
<b>{item['title']}</b><br>
Sentiment: {item['sentiment']} ({item['score']:.2f})<br>
<a href="{item['link']}" target="_blank" style="color: #007bff;">Read more</a>
</div>
"""
# Generate recommendation
recommendation = f"""
<div style="padding: 20px; background: {'#d4edda' if macd_signal == 'Bullish' else '#f8d7da'}; border-radius: 5px;">
<h4>Recommendation for {ticker}</h4>
<p>RSI: {latest['RSI']:.2f} ({rsi_signal})</p>
<p>MACD: {macd_signal}</p>
<p>50-Day MA: {latest['MA50']:.2f}</p>
<p>200-Day MA: {latest['MA200']:.2f}</p>
<h4 style="color: {'green' if macd_signal == 'Bullish' else 'red'};">{'Consider Buying' if macd_signal == 'Bullish' else 'Consider Selling'}</h4>
</div>
"""
return recommendation, fig.to_html(), news_html
# ------------------- App Configuration -------------------
iface = gr.Interface(
fn=analyze_stock,
inputs=gr.Textbox(label="Enter PSX Ticker (e.g., HBL, LUCK, OGDC)"),
outputs=[
gr.HTML(label="Recommendation"),
gr.HTML(label="Technical Analysis"),
gr.HTML(label="Market News")
],
title="πŸš€ PSX Smart Trading Assistant",
description="Real-time Pakistan Stock Exchange Analysis with AI-powered Insights",
examples=[["HBL"], ["LUCK"], ["OGDC"]],
allow_flagging="never",
theme=gr.themes.Soft()
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)