Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import yfinance as yf
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
from datetime import datetime, timedelta
|
| 7 |
+
import requests
|
| 8 |
+
from bs4 import BeautifulSoup
|
| 9 |
+
import feedparser
|
| 10 |
+
|
| 11 |
+
# ------------------- Constants -------------------
|
| 12 |
+
KSE_100 = [
|
| 13 |
+
"HBL", "UBL", "MCB", "BAHL", "ABL",
|
| 14 |
+
"LUCK", "EFERT", "FCCL", "DGKC", "MLCF",
|
| 15 |
+
"OGDC", "PPL", "POL", "PSO", "SNGP",
|
| 16 |
+
"ENGRO", "HUBC", "KAPCO", "NESTLE", "EFOODS",
|
| 17 |
+
"PSX", "TRG", "SYS", "NML", "ILP",
|
| 18 |
+
"ATRL", "NRL", "HASCOL", "SHEL", "BAFL"
|
| 19 |
+
] # Add all KSE-100 tickers
|
| 20 |
+
|
| 21 |
+
# ------------------- Hugging Face Models -------------------
|
| 22 |
+
sentiment_analyzer = pipeline("text-classification", model="ProsusAI/finbert")
|
| 23 |
+
news_summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 24 |
+
|
| 25 |
+
# ------------------- Technical Analysis -------------------
|
| 26 |
+
def calculate_rsi(data, window=14):
|
| 27 |
+
delta = data['Close'].diff()
|
| 28 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()
|
| 29 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()
|
| 30 |
+
rs = gain / loss
|
| 31 |
+
return 100 - (100 / (1 + rs))
|
| 32 |
+
|
| 33 |
+
# ------------------- Data Fetching -------------------
|
| 34 |
+
def get_stock_data(ticker):
|
| 35 |
+
try:
|
| 36 |
+
stock = yf.Ticker(f"{ticker}.KA")
|
| 37 |
+
data = stock.history(period="1y")
|
| 38 |
+
if data.empty:
|
| 39 |
+
return None
|
| 40 |
+
data['RSI'] = calculate_rsi(data)
|
| 41 |
+
return data
|
| 42 |
+
except:
|
| 43 |
+
return None
|
| 44 |
+
|
| 45 |
+
# ------------------- Analysis Engine -------------------
|
| 46 |
+
def analyze_ticker(ticker):
|
| 47 |
+
data = get_stock_data(ticker)
|
| 48 |
+
if data is None:
|
| 49 |
+
return None
|
| 50 |
+
|
| 51 |
+
current_price = data['Close'].iloc[-1]
|
| 52 |
+
rsi = data['RSI'].iloc[-1]
|
| 53 |
+
|
| 54 |
+
# Simple Recommendation Logic
|
| 55 |
+
if rsi < 30:
|
| 56 |
+
status = "STRONG BUY"
|
| 57 |
+
color = "green"
|
| 58 |
+
elif rsi > 70:
|
| 59 |
+
status = "STRONG SELL"
|
| 60 |
+
color = "red"
|
| 61 |
+
else:
|
| 62 |
+
status = "HOLD"
|
| 63 |
+
color = "orange"
|
| 64 |
+
|
| 65 |
+
return {
|
| 66 |
+
"ticker": ticker,
|
| 67 |
+
"price": round(current_price, 2),
|
| 68 |
+
"rsi": round(rsi, 2),
|
| 69 |
+
"status": status,
|
| 70 |
+
"color": color
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
# ------------------- Generate Recommendations -------------------
|
| 74 |
+
def get_recommendations():
|
| 75 |
+
recommendations = []
|
| 76 |
+
for ticker in KSE_100:
|
| 77 |
+
analysis = analyze_ticker(ticker)
|
| 78 |
+
if analysis:
|
| 79 |
+
recommendations.append(analysis)
|
| 80 |
+
|
| 81 |
+
df = pd.DataFrame(recommendations)
|
| 82 |
+
df = df.sort_values(by='rsi')
|
| 83 |
+
return df
|
| 84 |
+
|
| 85 |
+
# ------------------- Interface Components -------------------
|
| 86 |
+
def create_stock_analysis(ticker):
|
| 87 |
+
data = get_stock_data(ticker)
|
| 88 |
+
if data is None:
|
| 89 |
+
return "Data not available", None, None
|
| 90 |
+
|
| 91 |
+
# Create Plot
|
| 92 |
+
fig = go.Figure(data=[go.Candlestick(
|
| 93 |
+
x=data.index,
|
| 94 |
+
open=data['Open'],
|
| 95 |
+
high=data['High'],
|
| 96 |
+
low=data['Low'],
|
| 97 |
+
close=data['Close']
|
| 98 |
+
)])
|
| 99 |
+
fig.update_layout(title=f"{ticker} Price Chart")
|
| 100 |
+
|
| 101 |
+
# Analysis
|
| 102 |
+
analysis = analyze_ticker(ticker)
|
| 103 |
+
status_md = f"## {analysis['status']} \n" \
|
| 104 |
+
f"**Price**: {analysis['price']} \n" \
|
| 105 |
+
f"**RSI**: {analysis['rsi']}"
|
| 106 |
+
|
| 107 |
+
return status_md, fig.to_html(), get_news(ticker)
|
| 108 |
+
|
| 109 |
+
def get_news(ticker):
|
| 110 |
+
try:
|
| 111 |
+
url = f"https://www.google.com/search?q={ticker}+stock+pakistan&tbm=nws"
|
| 112 |
+
response = requests.get(url)
|
| 113 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 114 |
+
articles = soup.find_all('div', class_='BNeawe vvjwJb AP7Wnd')[:3]
|
| 115 |
+
return "\n\n".join([a.text for a in articles])
|
| 116 |
+
except:
|
| 117 |
+
return "News unavailable"
|
| 118 |
+
|
| 119 |
+
# ------------------- Gradio Interface -------------------
|
| 120 |
+
with gr.Blocks(title="PSX Trading Dashboard", theme=gr.themes.Soft()) as app:
|
| 121 |
+
with gr.Row():
|
| 122 |
+
# Left Sidebar - KSE-100 List
|
| 123 |
+
with gr.Column(scale=1, min_width=200):
|
| 124 |
+
gr.Markdown("## KSE-100 Constituents")
|
| 125 |
+
kse_list = gr.DataFrame(
|
| 126 |
+
value=pd.DataFrame(KSE_100, columns=["Ticker"]),
|
| 127 |
+
interactive=False,
|
| 128 |
+
height=600
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Main Content
|
| 132 |
+
with gr.Column(scale=3):
|
| 133 |
+
gr.Markdown("# PSX Trading Dashboard")
|
| 134 |
+
with gr.Row():
|
| 135 |
+
ticker_input = gr.Textbox(label="Enter Ticker", placeholder="HBL")
|
| 136 |
+
analyze_btn = gr.Button("Analyze")
|
| 137 |
+
|
| 138 |
+
status_output = gr.Markdown()
|
| 139 |
+
chart_output = gr.HTML()
|
| 140 |
+
news_output = gr.Textbox(label="Latest News", interactive=False)
|
| 141 |
+
|
| 142 |
+
# Right Sidebar - Recommendations
|
| 143 |
+
with gr.Column(scale=1, min_width=200):
|
| 144 |
+
gr.Markdown("## Live Recommendations")
|
| 145 |
+
recommendations = gr.DataFrame(
|
| 146 |
+
headers=["Ticker", "Price", "RSI", "Status"],
|
| 147 |
+
datatype=["str", "number", "number", "str"],
|
| 148 |
+
interactive=False,
|
| 149 |
+
height=600
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# Event Handlers
|
| 153 |
+
analyze_btn.click(
|
| 154 |
+
fn=create_stock_analysis,
|
| 155 |
+
inputs=ticker_input,
|
| 156 |
+
outputs=[status_output, chart_output, news_output]
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
app.load(
|
| 160 |
+
fn=get_recommendations,
|
| 161 |
+
outputs=recommendations,
|
| 162 |
+
every=300 # Refresh every 5 minutes
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# ------------------- Run App -------------------
|
| 166 |
+
if __name__ == "__main__":
|
| 167 |
+
app.launch(server_port=7860, share=True)
|