Spaces:
Running
Running
| # -*- coding: utf-8 -*- | |
| """ | |
| # MANIFESTO ANALYSIS | |
| """ | |
| ##IMPORTING LIBRARIES | |
| import random | |
| import matplotlib.pyplot as plt | |
| import nltk | |
| from nltk.tokenize import word_tokenize,sent_tokenize | |
| from nltk.corpus import stopwords | |
| from nltk.stem.porter import PorterStemmer | |
| from nltk.stem import WordNetLemmatizer | |
| from nltk.corpus import stopwords | |
| from nltk.tokenize import word_tokenize | |
| from nltk.probability import FreqDist | |
| from cleantext import clean | |
| import textract | |
| import urllib.request | |
| import nltk.corpus | |
| from nltk.text import Text | |
| import io | |
| from io import StringIO,BytesIO | |
| import sys | |
| import pandas as pd | |
| import cv2 | |
| import re | |
| from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator | |
| from textblob import TextBlob | |
| from PIL import Image | |
| import os | |
| import gradio as gr | |
| from zipfile import ZipFile | |
| import contractions | |
| import unidecode | |
| nltk.download('stopwords') | |
| nltk.download('punkt') | |
| nltk.download('wordnet') | |
| nltk.download('words') | |
| """## PARSING FILES""" | |
| #def Parsing(parsed_text): | |
| #parsed_text=parsed_text.name | |
| #raw_party =parser.from_file(parsed_text) | |
| # raw_party = raw_party['content'] | |
| # return clean(raw_party) | |
| def Parsing(parsed_text): | |
| parsed_text=parsed_text.name | |
| raw_party =textract.process(parsed_text, encoding='ascii',method='pdfminer') | |
| return clean(raw_party) | |
| #Added more stopwords to avoid irrelevant terms | |
| stop_words = set(stopwords.words('english')) | |
| stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2') | |
| """## PREPROCESSING""" | |
| def clean_text(text): | |
| ''' | |
| The function which returns clean text | |
| ''' | |
| text = text.encode("ascii", errors="ignore").decode("ascii") # remove non-asciicharacters | |
| text=unidecode.unidecode(text)# diacritics remove | |
| text=contractions.fix(text) # contraction fix | |
| text = re.sub(r"\n", " ", text) | |
| text = re.sub(r"\n\n", " ", text) | |
| text = re.sub(r"\t", " ", text) | |
| text = re.sub(r"/ ", " ", text) | |
| text = text.strip(" ") | |
| text = re.sub(" +", " ", text).strip() # get rid of multiple spaces and replace with a single | |
| text = [word for word in text.split() if word not in stop_words] | |
| text = ' '.join(text) | |
| return text | |
| # text_Party=clean_text(raw_party) | |
| def Preprocess(textParty): | |
| ''' | |
| Removing special characters extra spaces | |
| ''' | |
| text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty) | |
| #Removing all stop words | |
| pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*') | |
| text2Party = pattern.sub('', text1Party) | |
| # fdist_cong = FreqDist(word_tokens_cong) | |
| return text2Party | |
| ''' | |
| Using Concordance, you can see each time a word is used, along with its | |
| immediate context. It can give you a peek into how a word is being used | |
| at the sentence level and what words are used with it. | |
| ''' | |
| def concordance(text_Party,strng): | |
| word_tokens_party = word_tokenize(text_Party) | |
| moby = Text(word_tokens_party) | |
| resultList = [] | |
| for i in range(0,1): | |
| save_stdout = sys.stdout | |
| result = StringIO() | |
| sys.stdout = result | |
| moby.concordance(strng,lines=4,width=82) | |
| sys.stdout = save_stdout | |
| s=result.getvalue().splitlines() | |
| return result.getvalue() | |
| def normalize(d, target=1.0): | |
| raw = sum(d.values()) | |
| factor = target/raw | |
| return {key:value*factor for key,value in d.items()} | |
| def fDistance(text2Party): | |
| ''' | |
| Most frequent words search | |
| ''' | |
| word_tokens_party = word_tokenize(text2Party) #Tokenizing | |
| fdistance = FreqDist(word_tokens_party).most_common(10) | |
| mem={} | |
| for x in fdistance: | |
| mem[x[0]]=x[1] | |
| return normalize(mem) | |
| def fDistancePlot(text2Party,plotN=15): | |
| ''' | |
| Most Frequent Words Visualization | |
| ''' | |
| word_tokens_party = word_tokenize(text2Party) #Tokenizing | |
| fdistance = FreqDist(word_tokens_party) | |
| plt.title('Frequency Distribution') | |
| plt.axis('off') | |
| plt.figure(figsize=(4,3)) | |
| fdistance.plot(plotN) | |
| plt.tight_layout() | |
| buf = BytesIO() | |
| plt.savefig(buf) | |
| buf.seek(0) | |
| img1 = Image.open(buf) | |
| plt.clf() | |
| return img1 | |
| def getSubjectivity(text): | |
| ''' | |
| Create a function to get the polarity | |
| ''' | |
| return TextBlob(text).sentiment.subjectivity | |
| def getPolarity(text): | |
| ''' | |
| Create a function to get the polarity | |
| ''' | |
| return TextBlob(text).sentiment.polarity | |
| def getAnalysis(score): | |
| if score < 0: | |
| return 'Negative' | |
| elif score == 0: | |
| return 'Neutral' | |
| else: | |
| return 'Positive' | |
| url = "http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf" | |
| path_input = "./Bjp_Manifesto_2019.pdf'" | |
| urllib.request.urlretrieve(url, filename=path_input) | |
| url="https://drive.google.com/uc?id=1BLCiy_BWilfVdrUH8kbO-44DJevwO5CG&export=download" | |
| path_input = "./Aap_Manifesto_2019.pdf" | |
| urllib.request.urlretrieve(url, filename=path_input) | |
| url="https://drive.google.com/uc?id=1HVZvTtYntl0YKLnE0cwu0CvAIRhXOv60&export=download" | |
| path_input = "./Congress_Manifesto_2019.pdf" | |
| urllib.request.urlretrieve(url, filename=path_input) | |
| def analysis(Manifesto,Search): | |
| raw_party = Parsing(Manifesto) | |
| text_Party=clean_text(raw_party) | |
| text_Party= Preprocess(text_Party) | |
| df = pd.DataFrame(raw_party.split('\n'), columns=['Content']) | |
| df['Subjectivity'] = df['Content'].apply(getSubjectivity) | |
| df['Polarity'] = df['Content'].apply(getPolarity) | |
| df['Analysis on Polarity'] = df['Polarity'].apply(getAnalysis) | |
| df['Analysis on Subjectivity'] = df['Subjectivity'].apply(getAnalysis) | |
| plt.title('Sentiment Analysis') | |
| plt.xlabel('Sentiment') | |
| plt.ylabel('Counts') | |
| plt.figure(figsize=(4,3)) | |
| df['Analysis on Polarity'].value_counts().plot(kind ='bar') | |
| plt.tight_layout() | |
| buf = BytesIO() | |
| plt.savefig(buf) | |
| buf.seek(0) | |
| img1 = Image.open(buf) | |
| plt.clf() | |
| plt.figure(figsize=(4,3)) | |
| df['Analysis on Subjectivity'].value_counts().plot(kind ='bar') | |
| plt.tight_layout() | |
| buf = BytesIO() | |
| plt.savefig(buf) | |
| buf.seek(0) | |
| img2 = Image.open(buf) | |
| plt.clf() | |
| wordcloud = WordCloud(max_words=2000, background_color="white",mode="RGB").generate(text_Party) | |
| plt.figure(figsize=(4,3)) | |
| plt.imshow(wordcloud, interpolation="bilinear") | |
| plt.axis("off") | |
| plt.tight_layout() | |
| buf = BytesIO() | |
| plt.savefig(buf) | |
| buf.seek(0) | |
| img3 = Image.open(buf) | |
| plt.clf() | |
| fdist_Party=fDistance(text_Party) | |
| img4=fDistancePlot(text_Party) | |
| searchRes=concordance(text_Party,Search) | |
| searChRes=clean(searchRes) | |
| searChRes=searchRes.replace(Search,"\u0332".join(Search)) | |
| return searChRes,fdist_Party,img1,img2,img3,img4 | |
| Search_txt=gr.inputs.Textbox() | |
| filePdf = gr.inputs.File() | |
| text = gr.outputs.Textbox(label='SEARCHED OUTPUT') | |
| mfw=gr.outputs.Label(label="Most Relevant Topics") | |
| plot1=gr.outputs. Image(label='Sentiment Analysis') | |
| plot2=gr.outputs.Image(label='Subjectivity Analysis') | |
| plot3=gr.outputs.Image(label='Word Cloud') | |
| plot4=gr.outputs.Image(label='Frequency Distribution') | |
| io=gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[text,mfw,plot1,plot2,plot3,plot4], title='Manifesto Analysis',examples=[['./Bjp_Manifesto_2019.pdf','india'],['./Aap_Manifesto_2019.pdf','delhi'],['./Congress_Manifesto_2019.pdf','safety']]) | |
| io.launch(debug=False,share=True) | |
| #,examples=[['./Bjp_Manifesto_2019.pdf','india'],['./Aap_Manifesto_2019.pdf',],['./Congress_Manifesto_2019.pdf',]] | |