Spaces:
Running
Running
File size: 8,143 Bytes
d7041cd 889a80b d7041cd b5caa7a d7041cd ba75603 d7041cd c1bc2bf d7041cd c1bc2bf d7041cd c5184ef d7041cd b5caa7a c66aadd b5caa7a d7041cd ab03678 d7041cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
from typing import List
import gradio as gr
import numpy as np
import pandas as pd
from assets.text import INTRODUCTION_TEXT, METRICS_TEXT, EVALUTION_TEXT, ACKNOWLEDGEMENTS_TEXT, REFERENCE_TEXT
ORIGINAL_DF = pd.read_csv("./data/chinese_benchmark_gen.csv", sep='\t') # space separated values
ORIGINAL_DF_PER = pd.read_csv("./data/chinese_benchmark_per.csv", sep='\t') #
ORIGINAL_DF_SUB_GEN = pd.read_csv("./data/subclass_gen.csv", sep=',') #
ORIGINAL_DF_SUB_PER = pd.read_csv("./data/subclass_per.csv", sep=',')
METRICS = ["Accuracy", "Precision_Unsafe", "Recall_Unsafe", "Precision_Safe", "Recall_Safe", "None"]
SUBCLASS = ["Discrimination", "Variant", "Psychology", "Politics", "Eroticism", "Vulgarity", "Property", "Injury", "Criminality", "Ethics"]
#SPLITS = ["Overall", "Subclass"]
SPLITS = ["Overall", "Discrimination", "Variant", "Psychology", "Politics", "Eroticism", "Vulgarity", "Property", "Injury", "Criminality", "Ethics"]
CLASSIFICATION = {
"model_size": [
">65B",
"~30B",
"10B~20B",
"5B~10B",
"API",
]
}
# _BIBTEX = """ Waiting for paper ... """
_BIBTEX = """
@misc{zhang2024chinesesafechinesebenchmarkevaluating,
title={ChineseSafe: A Chinese Benchmark for Evaluating Safety in Large Language Models},
author={Hengxiang Zhang and Hongfu Gao and Qiang Hu and Guanhua Chen and Lili Yang and Bingyi Jing and Hongxin Wei and Bing Wang and Haifeng Bai and Lei Yang},
year={2024},
eprint={2410.18491},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.18491},
}
"""
_LAST_UPDATED = "November 24, 2024"
banner_url = "./assets/logo.png"
_BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>' # noqa
def retrieve_array_from_text(text):
return np.fromstring(text.replace("[", "").replace("]", ""), dtype=float, sep=",")
def format_csv_numbers(text):
return text.split('/')[0]
def format_csv_numbers_second(text):
return text.split()
def format_number(x):
return float(f"{x:.3}")
def get_dataset_csv(
model_size: List[str],
):
df = ORIGINAL_DF[ORIGINAL_DF['Size'].isin(model_size)]
df = df.drop(columns="Size")
leaderboard_table = gr.components.Dataframe(
value=df,
interactive=False,
visible=True,
)
return leaderboard_table
def get_dataset_csv_per(
model_size: List[str],
):
df = ORIGINAL_DF_PER[ORIGINAL_DF_PER['Size'].isin(model_size)]
df = df.drop(columns="Size")
leaderboard_table = gr.components.Dataframe(
value=df,
interactive=False,
visible=True,
)
return leaderboard_table
# this is a sub function for csv table
def get_dataset_csv_sub_gen(
model_size: List[str],
subclass_choice: List[str],
):
df = ORIGINAL_DF_SUB_GEN[ORIGINAL_DF_SUB_GEN['Size'].isin(model_size)]
df = df.drop(columns="Size")
# get subclass
subclass_choice_label = ["Model", subclass_choice+"_Accuracy", subclass_choice+"_Precision", subclass_choice+"_Recall"]
df = df[subclass_choice_label]
leaderboard_table = gr.components.Dataframe(
value=df,
interactive=False,
visible=True,
)
return leaderboard_table
# this is a sub function for csv table
def get_dataset_csv_sub_per(
model_size: List[str],
subclass_choice: List[str],
):
df = ORIGINAL_DF_SUB_PER[ORIGINAL_DF_SUB_PER['Size'].isin(model_size)]
df = df.drop(columns="Size")
# get subclass
subclass_choice_label = ["Model", subclass_choice+"_Accuracy", subclass_choice+"_Precision", subclass_choice+"_Recall"]
df = df[subclass_choice_label]
leaderboard_table = gr.components.Dataframe(
value=df,
interactive=False,
visible=True,
)
return leaderboard_table
def get_dataset_classfier_gen(
model_size: List[str],
main_choice: List[str],
):
if main_choice == "Overall":
leaderboard_table = get_dataset_csv(model_size)
elif main_choice != "Subclass":
subclass_choice = main_choice
leaderboard_table = get_dataset_csv_sub_gen(model_size, subclass_choice)
return leaderboard_table
def get_dataset_classfier_per(
model_size: List[str],
main_choice: List[str],
):
if main_choice == "Overall":
leaderboard_table = get_dataset_csv_per(model_size)
elif main_choice != "Overall":
subclass_choice = main_choice
leaderboard_table = get_dataset_csv_sub_per(model_size, subclass_choice)
return leaderboard_table
with gr.Blocks() as demo:
gr.Markdown("<center><h1>ChineseSafe Leaderboard</h1></center>", elem_classes="markdown-text")
with gr.Row():
#gr.Image(banner_url, height=160, scale=1) # π this part is for image
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# gr.Textbox(_INTRODUCTION_TEXT, scale=5)
with gr.Row():
gr.Markdown(METRICS_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(EVALUTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column(scale=0.8):
main_choice = gr.Dropdown(
choices=SPLITS,
value="Overall",
label="Type",
info="Please choose the type to display.",
)
with gr.Column(scale=10):
model_choice = gr.CheckboxGroup(
choices=CLASSIFICATION["model_size"],
value=CLASSIFICATION["model_size"], # all be choosed
label="Model Size",
info="Please choose the model size to display.",
)
#π this part is for csv table generatived
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# ----------------- modify text -----------------
with gr.TabItem("π
Generation", elem_id="od-benchmark-tab-table", id=6):
dataframe_all_gen = gr.components.Dataframe(
elem_id="leaderboard-table",
)
with gr.TabItem("π
Perplexity", elem_id="od-benchmark-tab-table", id=5):
dataframe_all_per = gr.components.Dataframe(
elem_id="leaderboard-table",
)
# ----------------- modify text -----------------
with gr.Row():
gr.Markdown(ACKNOWLEDGEMENTS_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(REFERENCE_TEXT, elem_classes="markdown-text")
# π this part is for citation
with gr.Row():
with gr.Accordion("π Citation", open=True):
gr.Textbox(
value=_BIBTEX,
lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True
)
gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")
# --------------------------- all --------------------------------
# this is all result Perplexity
main_choice.change(
get_dataset_classfier_per,
inputs=[model_choice, main_choice],
outputs=dataframe_all_per,
)
model_choice.change(
get_dataset_classfier_per,
inputs=[model_choice, main_choice],
outputs=dataframe_all_per,
)
demo.load(
fn=get_dataset_classfier_per,
inputs=[model_choice, main_choice],
outputs=dataframe_all_per,
)
# this is all result generatived
main_choice.change(
get_dataset_classfier_gen,
inputs=[model_choice, main_choice],
outputs=dataframe_all_gen,
)
model_choice.change(
get_dataset_classfier_gen,
inputs=[model_choice, main_choice],
outputs=dataframe_all_gen,
)
demo.load(
fn=get_dataset_classfier_gen,
inputs=[model_choice, main_choice],
outputs=dataframe_all_gen,
)
demo.launch(share=True)
|