Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## CSCI4750/5750: homework03 submission
|
2 |
+
## load the dataset
|
3 |
+
def hw03_derive_MNIST_train_test_data():
|
4 |
+
from sklearn.datasets import fetch_openml
|
5 |
+
import numpy as np
|
6 |
+
mnist = fetch_openml('mnist_784', version=1, as_frame=False)
|
7 |
+
X, y = mnist["data"], mnist["target"]
|
8 |
+
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
|
9 |
+
y_train = y_train.astype(np.int) # convert to int
|
10 |
+
y_test = y_test.astype(np.int) # convert to int
|
11 |
+
return X_train, X_test, y_train, y_test
|
12 |
+
|
13 |
+
X_train, X_test, y_train, y_test = hw03_derive_MNIST_train_test_data()
|
14 |
+
print("X_train.shape: ", X_train.shape)
|
15 |
+
print("X_test.shape: ", X_test.shape)
|
16 |
+
print("y_train.shape: ", y_train.shape)
|
17 |
+
print("y_test.shape: ", y_test.shape)
|
18 |
+
|
19 |
+
train_features = X_train
|
20 |
+
train_labels = y_train
|
21 |
+
test_feature = X_test[0]
|
22 |
+
K = 3
|
23 |
+
print("train_features: ",train_features.shape)
|
24 |
+
print("train_labels: ",train_labels.shape)
|
25 |
+
print("test_feature: ",test_feature.shape)
|
26 |
+
|
27 |
+
# Practice 5: deploy our KNN classifier to web application, with multiple outputs
|
28 |
+
|
29 |
+
import scipy
|
30 |
+
import gradio as gr
|
31 |
+
import numpy as np
|
32 |
+
import cv2
|
33 |
+
import os
|
34 |
+
|
35 |
+
def get_sample_images(num_images):
|
36 |
+
sample_images = []
|
37 |
+
for i in range(num_images):
|
38 |
+
train_feature = X_train[i]
|
39 |
+
train_feature_2d =train_feature.reshape(28,28)
|
40 |
+
|
41 |
+
# Make it unsigned integers:
|
42 |
+
data = train_feature_2d.astype(np.uint8)
|
43 |
+
|
44 |
+
outdir = "images_folder"
|
45 |
+
img_path = os.path.join(outdir, 'local_%05d.png' % (i,))
|
46 |
+
if not os.path.exists(outdir):
|
47 |
+
os.mkdir(outdir)
|
48 |
+
cv2.imwrite(img_path, data)
|
49 |
+
|
50 |
+
sample_images.append([img_path,int(np.random.choice([7,9,11,13]))]) # ["image path", "K"]
|
51 |
+
return sample_images
|
52 |
+
|
53 |
+
# EXTRA: adapted from https://github.com/ageron/handson-ml2/blob/master/03_classification.ipynb
|
54 |
+
def plot_digits(instances, images_per_row=3):
|
55 |
+
import matplotlib.pyplot as plt
|
56 |
+
import matplotlib as mpl
|
57 |
+
size = 28
|
58 |
+
images_per_row = min(len(instances), images_per_row)
|
59 |
+
# This is equivalent to n_rows = ceil(len(instances) / images_per_row):
|
60 |
+
n_rows = (len(instances) - 1) // images_per_row + 1
|
61 |
+
|
62 |
+
n = len(instances)
|
63 |
+
|
64 |
+
fig = plt.figure()
|
65 |
+
for i in range(len(instances)):
|
66 |
+
# Debug, plot figure
|
67 |
+
fig.add_subplot(n_rows, images_per_row, i + 1)
|
68 |
+
#print(instances[i])
|
69 |
+
plt.imshow(instances[i].reshape(size,size), cmap = mpl.cm.binary)
|
70 |
+
plt.axis("off")
|
71 |
+
plt.title("Neighbor "+str(i+1))
|
72 |
+
fig.tight_layout()
|
73 |
+
|
74 |
+
plt.savefig('results.png', dpi=300)
|
75 |
+
return 'results.png'
|
76 |
+
|
77 |
+
|
78 |
+
## machine learning classifier
|
79 |
+
def KNN_predict(train_features, train_labels, test_feature, K):
|
80 |
+
label_record = []
|
81 |
+
for i in range(len(train_features)):
|
82 |
+
train_point_feature = train_features[i]
|
83 |
+
test_point_feature = test_feature
|
84 |
+
### (1) calculate distance between test feature and each of training data points
|
85 |
+
|
86 |
+
# get distance for data point i
|
87 |
+
dis = scipy.spatial.distance.euclidean(train_point_feature, test_point_feature)
|
88 |
+
|
89 |
+
# collect lable for datapoint i
|
90 |
+
y = train_labels[i]
|
91 |
+
label_record.append((dis, y, train_point_feature))
|
92 |
+
|
93 |
+
# sort data points by distance
|
94 |
+
from operator import itemgetter
|
95 |
+
sorted_labels = sorted(label_record,key=itemgetter(0))
|
96 |
+
# get major class from top K neighbors
|
97 |
+
major_class = []
|
98 |
+
neighbor_imgs = []
|
99 |
+
for k in range(K):
|
100 |
+
major_class.append(sorted_labels[k][1])
|
101 |
+
|
102 |
+
# at most 15 neighbors for visualization
|
103 |
+
if k <15:
|
104 |
+
neighbor_feature = sorted_labels[k][2]
|
105 |
+
neighbor_imgs.append(neighbor_feature)
|
106 |
+
|
107 |
+
### get final prediction
|
108 |
+
final_prediction = scipy.stats.mode(major_class).mode[0]
|
109 |
+
|
110 |
+
### get neighbor images and save to local
|
111 |
+
neighbor_imgs =np.array(neighbor_imgs)
|
112 |
+
image_path = plot_digits(neighbor_imgs, images_per_row=3)
|
113 |
+
|
114 |
+
return final_prediction, image_path
|
115 |
+
|
116 |
+
### main function for gradio to call to classify image
|
117 |
+
def call_our_KNN(test_image, K=7):
|
118 |
+
test_image_flatten = test_image.reshape((-1, 28*28))
|
119 |
+
y_pred_each, image_path = KNN_predict(train_features, train_labels, test_image_flatten, K)
|
120 |
+
return y_pred_each, image_path
|
121 |
+
|
122 |
+
|
123 |
+
### generate several example cases
|
124 |
+
sample_images = get_sample_images(10)
|
125 |
+
|
126 |
+
### configure inputs/outputs
|
127 |
+
set_image = gr.inputs.Image(shape=(28, 28), image_mode='L')
|
128 |
+
set_K = gr.inputs.Slider(0, 100, default=7)
|
129 |
+
|
130 |
+
set_label = gr.outputs.Textbox(label="Predicted Digit")
|
131 |
+
set_out_images = gr.outputs.Image(label="Closest Neighbors")
|
132 |
+
|
133 |
+
|
134 |
+
### configure gradio, detailed can be found at https://www.gradio.app/docs/#i_slider
|
135 |
+
interface = gr.Interface(fn=call_our_KNN,
|
136 |
+
inputs=[set_image, set_K],
|
137 |
+
outputs=[set_label,set_out_images],
|
138 |
+
examples_per_page = 2,
|
139 |
+
examples = sample_images,
|
140 |
+
title="CSCI4750: Digit classification using KNN algorithm",
|
141 |
+
description= "Click examples below for a quick demo",
|
142 |
+
theme = 'huggingface',
|
143 |
+
layout = 'vertical',
|
144 |
+
live=True
|
145 |
+
)
|
146 |
+
interface.launch(debug=True)
|