- apps/__pycache__/mv_models.cpython-38.pyc +0 -0
- apps/mv_models.py +65 -71
apps/__pycache__/mv_models.cpython-38.pyc
CHANGED
|
Binary files a/apps/__pycache__/mv_models.cpython-38.pyc and b/apps/__pycache__/mv_models.cpython-38.pyc differ
|
|
|
apps/mv_models.py
CHANGED
|
@@ -26,99 +26,92 @@ class GenMVImage(object):
|
|
| 26 |
self.seed = 1024
|
| 27 |
self.guidance_scale = 7.5
|
| 28 |
self.step = 50
|
| 29 |
-
self.pipelines = {}
|
| 30 |
self.device = device
|
| 31 |
-
|
| 32 |
-
@spaces.GPU
|
| 33 |
-
def gen_image_from_crm(self, image):
|
| 34 |
from .third_party.CRM.pipelines import TwoStagePipeline
|
| 35 |
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
|
| 36 |
stage1_sampler_config = stage1_config.sampler
|
| 37 |
stage1_model_config = stage1_config.models
|
| 38 |
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
|
| 39 |
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
mv_imgs = rt_dict["stage1_images"]
|
| 53 |
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
|
| 54 |
|
| 55 |
@spaces.GPU
|
| 56 |
def gen_image_from_mvdream(self, image, text):
|
| 57 |
-
from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
|
| 58 |
if image is None:
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
self.
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
self.pipelines['mvdream'] = self.pipelines['mvdream'].to(self.device)
|
| 68 |
-
pipe_MVDream = self.pipelines['mvdream']
|
| 69 |
-
mv_imgs = pipe_MVDream(
|
| 70 |
-
text,
|
| 71 |
-
negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
|
| 72 |
-
num_inference_steps=self.step,
|
| 73 |
-
guidance_scale=self.guidance_scale,
|
| 74 |
-
generator = torch.Generator(self.device).manual_seed(self.seed)
|
| 75 |
-
)
|
| 76 |
-
else:
|
| 77 |
image = np.array(image)
|
| 78 |
image = image.astype(np.float32) / 255.0
|
| 79 |
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
pipe_imagedream = self.pipelines['imagedream']
|
| 90 |
-
mv_imgs = pipe_imagedream(
|
| 91 |
-
text,
|
| 92 |
-
image,
|
| 93 |
-
negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
|
| 94 |
-
num_inference_steps=self.step,
|
| 95 |
-
guidance_scale=self.guidance_scale,
|
| 96 |
-
generator = torch.Generator(self.device).manual_seed(self.seed)
|
| 97 |
-
)
|
| 98 |
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
|
| 99 |
|
| 100 |
@spaces.GPU
|
| 101 |
def gen_image_from_wonder3d(self, image, crop_size):
|
| 102 |
-
sys.path.append(f"{parent_dir}/apps/third_party/Wonder3D")
|
| 103 |
-
from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers
|
| 104 |
|
| 105 |
weight_dtype = torch.float16
|
| 106 |
batch = prepare_data(image, crop_size)
|
| 107 |
|
| 108 |
-
|
| 109 |
-
pipeline = self.pipelines['wonder3d']
|
| 110 |
-
else:
|
| 111 |
-
self.pipelines['wonder3d'] = DiffusionPipeline.from_pretrained(
|
| 112 |
-
'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts'
|
| 113 |
-
custom_pipeline='flamehaze1115/wonder3d-pipeline',
|
| 114 |
-
torch_dtype=torch.float16
|
| 115 |
-
)
|
| 116 |
-
self.pipelines['wonder3d'].unet.enable_xformers_memory_efficient_attention()
|
| 117 |
-
self.pipelines['wonder3d'].to(self.device)
|
| 118 |
-
self.pipelines['wonder3d'].set_progress_bar_config(disable=True)
|
| 119 |
-
pipeline = self.pipelines['wonder3d']
|
| 120 |
-
|
| 121 |
-
generator = torch.Generator(device=pipeline.unet.device).manual_seed(self.seed)
|
| 122 |
# repeat (2B, Nv, 3, H, W)
|
| 123 |
imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(weight_dtype)
|
| 124 |
|
|
@@ -133,7 +126,7 @@ class GenMVImage(object):
|
|
| 133 |
imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
|
| 134 |
# (B*Nv, Nce)
|
| 135 |
|
| 136 |
-
out =
|
| 137 |
imgs_in,
|
| 138 |
# camera_embeddings,
|
| 139 |
generator=generator,
|
|
@@ -154,6 +147,7 @@ class GenMVImage(object):
|
|
| 154 |
mv_imgs = images_pred
|
| 155 |
return mv_imgs[0], mv_imgs[2], mv_imgs[4], mv_imgs[5]
|
| 156 |
|
|
|
|
| 157 |
def run(self, mvimg_model, text, image, crop_size, seed, guidance_scale, step):
|
| 158 |
self.seed = seed
|
| 159 |
self.guidance_scale = guidance_scale
|
|
@@ -161,6 +155,6 @@ class GenMVImage(object):
|
|
| 161 |
if mvimg_model.upper() == "CRM":
|
| 162 |
return self.gen_image_from_crm(image)
|
| 163 |
elif mvimg_model.upper() == "IMAGEDREAM":
|
| 164 |
-
return self.gen_image_from_mvdream(image,
|
| 165 |
elif mvimg_model.upper() == "WONDER3D":
|
| 166 |
return self.gen_image_from_wonder3d(image, crop_size)
|
|
|
|
| 26 |
self.seed = 1024
|
| 27 |
self.guidance_scale = 7.5
|
| 28 |
self.step = 50
|
|
|
|
| 29 |
self.device = device
|
| 30 |
+
|
|
|
|
|
|
|
| 31 |
from .third_party.CRM.pipelines import TwoStagePipeline
|
| 32 |
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
|
| 33 |
stage1_sampler_config = stage1_config.sampler
|
| 34 |
stage1_model_config = stage1_config.models
|
| 35 |
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
|
| 36 |
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
|
| 37 |
+
self.crm_pipeline = TwoStagePipeline(
|
| 38 |
+
stage1_model_config,
|
| 39 |
+
stage1_sampler_config,
|
| 40 |
+
device=self.device,
|
| 41 |
+
dtype=torch.float16
|
| 42 |
+
)
|
| 43 |
+
self.crm_pipeline.set_seed(self.seed)
|
| 44 |
+
|
| 45 |
+
sys.path.append(f"{parent_dir}/apps/third_party/Wonder3D")
|
| 46 |
+
from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers
|
| 47 |
+
self.wonder3d_pipeline = DiffusionPipeline.from_pretrained(
|
| 48 |
+
'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts'
|
| 49 |
+
custom_pipeline='flamehaze1115/wonder3d-pipeline',
|
| 50 |
+
torch_dtype=torch.float16
|
| 51 |
+
)
|
| 52 |
+
self.wonder3d_pipeline.unet.enable_xformers_memory_efficient_attention()
|
| 53 |
+
self.wonder3d_pipeline.to(self.device)
|
| 54 |
+
self.wonder3d_pipeline.set_progress_bar_config(disable=True)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
sys.path.append(f"{parent_dir}/apps/third_party/mvdream_diffusers")
|
| 58 |
+
from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
|
| 59 |
+
self.mvdream_pipeline = MVDreamPipeline.from_pretrained(
|
| 60 |
+
"ashawkey/mvdream-sd2.1-diffusers", # remote weights
|
| 61 |
+
torch_dtype=torch.float16,
|
| 62 |
+
trust_remote_code=True,
|
| 63 |
+
)
|
| 64 |
+
self.mvdream_pipeline = self.mvdream_pipeline.to(self.device)
|
| 65 |
+
# self.imagedream_pipeline = MVDreamPipeline.from_pretrained(
|
| 66 |
+
# "ashawkey/imagedream-ipmv-diffusers", # remote weights
|
| 67 |
+
# torch_dtype=torch.float16,
|
| 68 |
+
# trust_remote_code=True,
|
| 69 |
+
# )
|
| 70 |
+
# self.imagedream_pipeline = self.imagedream_pipeline.to(self.device)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@spaces.GPU
|
| 74 |
+
def gen_image_from_crm(self, image):
|
| 75 |
+
rt_dict = self.crm_pipeline(
|
| 76 |
+
image,
|
| 77 |
+
scale=self.guidance_scale,
|
| 78 |
+
step=self.step
|
| 79 |
+
)
|
| 80 |
mv_imgs = rt_dict["stage1_images"]
|
| 81 |
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
|
| 82 |
|
| 83 |
@spaces.GPU
|
| 84 |
def gen_image_from_mvdream(self, image, text):
|
|
|
|
| 85 |
if image is None:
|
| 86 |
+
mv_imgs = self.mvdream_pipeline(
|
| 87 |
+
text,
|
| 88 |
+
negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
|
| 89 |
+
num_inference_steps=self.step,
|
| 90 |
+
guidance_scale=self.guidance_scale,
|
| 91 |
+
generator = torch.Generator(self.device).manual_seed(self.seed)
|
| 92 |
+
)
|
| 93 |
+
elif text is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
image = np.array(image)
|
| 95 |
image = image.astype(np.float32) / 255.0
|
| 96 |
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
|
| 97 |
+
|
| 98 |
+
mv_imgs = self.imagedream_pipeline(
|
| 99 |
+
text,
|
| 100 |
+
image,
|
| 101 |
+
negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
|
| 102 |
+
num_inference_steps=self.step,
|
| 103 |
+
guidance_scale=self.guidance_scale,
|
| 104 |
+
generator = torch.Generator(self.device).manual_seed(self.seed)
|
| 105 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
|
| 107 |
|
| 108 |
@spaces.GPU
|
| 109 |
def gen_image_from_wonder3d(self, image, crop_size):
|
|
|
|
|
|
|
| 110 |
|
| 111 |
weight_dtype = torch.float16
|
| 112 |
batch = prepare_data(image, crop_size)
|
| 113 |
|
| 114 |
+
generator = torch.Generator(device=self.wonder3d_pipeline.unet.device).manual_seed(self.seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
# repeat (2B, Nv, 3, H, W)
|
| 116 |
imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(weight_dtype)
|
| 117 |
|
|
|
|
| 126 |
imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
|
| 127 |
# (B*Nv, Nce)
|
| 128 |
|
| 129 |
+
out = self.wonder3d_pipeline(
|
| 130 |
imgs_in,
|
| 131 |
# camera_embeddings,
|
| 132 |
generator=generator,
|
|
|
|
| 147 |
mv_imgs = images_pred
|
| 148 |
return mv_imgs[0], mv_imgs[2], mv_imgs[4], mv_imgs[5]
|
| 149 |
|
| 150 |
+
@spaces.GPU
|
| 151 |
def run(self, mvimg_model, text, image, crop_size, seed, guidance_scale, step):
|
| 152 |
self.seed = seed
|
| 153 |
self.guidance_scale = guidance_scale
|
|
|
|
| 155 |
if mvimg_model.upper() == "CRM":
|
| 156 |
return self.gen_image_from_crm(image)
|
| 157 |
elif mvimg_model.upper() == "IMAGEDREAM":
|
| 158 |
+
return self.gen_image_from_mvdream(image, None)
|
| 159 |
elif mvimg_model.upper() == "WONDER3D":
|
| 160 |
return self.gen_image_from_wonder3d(image, crop_size)
|