- apps/__pycache__/mv_models.cpython-38.pyc +0 -0
- apps/examples/toy1.webp +0 -0
- apps/mv_models.py +2 -0
- gradio_app copy.py +279 -0
- gradio_app.py +28 -4
apps/__pycache__/mv_models.cpython-38.pyc
CHANGED
|
Binary files a/apps/__pycache__/mv_models.cpython-38.pyc and b/apps/__pycache__/mv_models.cpython-38.pyc differ
|
|
|
apps/examples/toy1.webp
DELETED
|
Binary file (13.8 kB)
|
|
|
apps/mv_models.py
CHANGED
|
@@ -54,6 +54,8 @@ class GenMVImage(object):
|
|
| 54 |
|
| 55 |
@spaces.GPU
|
| 56 |
def gen_image_from_mvdream(self, image, text):
|
|
|
|
|
|
|
| 57 |
from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
|
| 58 |
if image is None:
|
| 59 |
if "mvdream" in self.pipelines.keys():
|
|
|
|
| 54 |
|
| 55 |
@spaces.GPU
|
| 56 |
def gen_image_from_mvdream(self, image, text):
|
| 57 |
+
sys.path.append(f"{parent_dir}/apps/third_party/mvdream_diffusers")
|
| 58 |
+
|
| 59 |
from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
|
| 60 |
if image is None:
|
| 61 |
if "mvdream" in self.pipelines.keys():
|
gradio_app copy.py
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import argparse
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import torch
|
| 6 |
+
import sys
|
| 7 |
+
import time
|
| 8 |
+
import importlib
|
| 9 |
+
import numpy as np
|
| 10 |
+
from omegaconf import OmegaConf
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
|
| 13 |
+
from collections import OrderedDict
|
| 14 |
+
import trimesh
|
| 15 |
+
from einops import repeat, rearrange
|
| 16 |
+
import pytorch_lightning as pl
|
| 17 |
+
from typing import Dict, Optional, Tuple, List
|
| 18 |
+
import gradio as gr
|
| 19 |
+
|
| 20 |
+
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 21 |
+
sys.path.append(os.path.join(proj_dir))
|
| 22 |
+
|
| 23 |
+
import tempfile
|
| 24 |
+
import craftsman
|
| 25 |
+
from craftsman.systems.base import BaseSystem
|
| 26 |
+
from craftsman.utils.config import ExperimentConfig, load_config
|
| 27 |
+
|
| 28 |
+
from apps.utils import *
|
| 29 |
+
from apps.mv_models import GenMVImage
|
| 30 |
+
|
| 31 |
+
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
|
| 32 |
+
_DESCRIPTION = '''
|
| 33 |
+
<div>
|
| 34 |
+
Select or upload a image, then just click 'Generate'.
|
| 35 |
+
<br>
|
| 36 |
+
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes,
|
| 37 |
+
then a multi-view normal enhanced image generation model is used to refine the mesh.
|
| 38 |
+
We provide the coarse 3D diffusion part here.
|
| 39 |
+
<br>
|
| 40 |
+
If you found Crafts is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks!
|
| 41 |
+
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a>
|
| 42 |
+
<br>
|
| 43 |
+
*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct mesh.
|
| 44 |
+
<br>
|
| 45 |
+
*If you have your own multi-view images, you can directly upload it.
|
| 46 |
+
</div>
|
| 47 |
+
'''
|
| 48 |
+
_CITE_ = r"""
|
| 49 |
+
---
|
| 50 |
+
π **Citation**
|
| 51 |
+
If you find our work useful for your research or applications, please cite using this bibtex:
|
| 52 |
+
```bibtex
|
| 53 |
+
@article{craftsman,
|
| 54 |
+
author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long},
|
| 55 |
+
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner},
|
| 56 |
+
journal = {arxiv:xxx},
|
| 57 |
+
year = {2024},
|
| 58 |
+
}
|
| 59 |
+
```
|
| 60 |
+
π€ **Acknowledgements**
|
| 61 |
+
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work.
|
| 62 |
+
π **License**
|
| 63 |
+
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first.
|
| 64 |
+
π§ **Contact**
|
| 65 |
+
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
model = None
|
| 69 |
+
cached_dir = None
|
| 70 |
+
|
| 71 |
+
@spaces.GPU
|
| 72 |
+
def image2mesh(view_front: np.ndarray,
|
| 73 |
+
view_right: np.ndarray,
|
| 74 |
+
view_back: np.ndarray,
|
| 75 |
+
view_left: np.ndarray,
|
| 76 |
+
more: bool = False,
|
| 77 |
+
scheluder_name: str ="DDIMScheduler",
|
| 78 |
+
guidance_scale: int = 7.5,
|
| 79 |
+
seed: int = 4,
|
| 80 |
+
octree_depth: int = 7):
|
| 81 |
+
|
| 82 |
+
sample_inputs = {
|
| 83 |
+
"mvimages": [[
|
| 84 |
+
Image.fromarray(view_front),
|
| 85 |
+
Image.fromarray(view_right),
|
| 86 |
+
Image.fromarray(view_back),
|
| 87 |
+
Image.fromarray(view_left)
|
| 88 |
+
]]
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
global model
|
| 92 |
+
latents = model.sample(
|
| 93 |
+
sample_inputs,
|
| 94 |
+
sample_times=1,
|
| 95 |
+
guidance_scale=guidance_scale,
|
| 96 |
+
return_intermediates=False,
|
| 97 |
+
seed=seed
|
| 98 |
+
|
| 99 |
+
)[0]
|
| 100 |
+
|
| 101 |
+
# decode the latents to mesh
|
| 102 |
+
box_v = 1.1
|
| 103 |
+
mesh_outputs, _ = model.shape_model.extract_geometry(
|
| 104 |
+
latents,
|
| 105 |
+
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
|
| 106 |
+
octree_depth=octree_depth
|
| 107 |
+
)
|
| 108 |
+
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo"
|
| 109 |
+
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1])
|
| 110 |
+
# filepath = f"{cached_dir}/{time.time()}.obj"
|
| 111 |
+
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
| 112 |
+
mesh.export(filepath, include_normals=True)
|
| 113 |
+
|
| 114 |
+
if 'Remesh' in more:
|
| 115 |
+
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name
|
| 116 |
+
print("Remeshing with Instant Meshes...")
|
| 117 |
+
# target_face_count = int(len(mesh.faces)/10)
|
| 118 |
+
target_face_count = 1000
|
| 119 |
+
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}"
|
| 120 |
+
os.system(command)
|
| 121 |
+
filepath = remeshed_filepath
|
| 122 |
+
# filepath = filepath.replace('.obj', '_remeshed.obj')
|
| 123 |
+
|
| 124 |
+
return filepath
|
| 125 |
+
|
| 126 |
+
if __name__=="__main__":
|
| 127 |
+
parser = argparse.ArgumentParser()
|
| 128 |
+
# parser.add_argument("--model_path", type=str, required=True, help="Path to the object file",)
|
| 129 |
+
parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir")
|
| 130 |
+
parser.add_argument("--device", type=int, default=0)
|
| 131 |
+
args = parser.parse_args()
|
| 132 |
+
|
| 133 |
+
cached_dir = args.cached_dir
|
| 134 |
+
os.makedirs(args.cached_dir, exist_ok=True)
|
| 135 |
+
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
| 136 |
+
print(f"using device: {device}")
|
| 137 |
+
|
| 138 |
+
# for multi-view images generation
|
| 139 |
+
background_choice = OrderedDict({
|
| 140 |
+
"Alpha as Mask": "Alpha as Mask",
|
| 141 |
+
"Auto Remove Background": "Auto Remove Background",
|
| 142 |
+
"Original Image": "Original Image",
|
| 143 |
+
})
|
| 144 |
+
# mvimg_model_config_list = ["CRM"]
|
| 145 |
+
mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"]
|
| 146 |
+
|
| 147 |
+
# for 3D latent set diffusion
|
| 148 |
+
ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model")
|
| 149 |
+
config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model")
|
| 150 |
+
scheluder_dict = OrderedDict({
|
| 151 |
+
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
|
| 152 |
+
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet
|
| 153 |
+
# "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet
|
| 154 |
+
})
|
| 155 |
+
|
| 156 |
+
# main GUI
|
| 157 |
+
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
| 158 |
+
button_secondary_background_fill="*neutral_100",
|
| 159 |
+
button_secondary_background_fill_hover="*neutral_200")
|
| 160 |
+
custom_css = '''#disp_image {
|
| 161 |
+
text-align: center; /* Horizontally center the content */
|
| 162 |
+
}'''
|
| 163 |
+
|
| 164 |
+
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
| 165 |
+
with gr.Row():
|
| 166 |
+
with gr.Column(scale=1):
|
| 167 |
+
gr.Markdown('# ' + _TITLE)
|
| 168 |
+
gr.Markdown(_DESCRIPTION)
|
| 169 |
+
|
| 170 |
+
with gr.Row():
|
| 171 |
+
with gr.Column(scale=2):
|
| 172 |
+
with gr.Row():
|
| 173 |
+
image_input = gr.Image(
|
| 174 |
+
label="Image Input",
|
| 175 |
+
image_mode="RGBA",
|
| 176 |
+
sources="upload",
|
| 177 |
+
type="pil",
|
| 178 |
+
)
|
| 179 |
+
with gr.Row():
|
| 180 |
+
text = gr.Textbox(label="Prompt (Optional, only works for mvdream)", visible=False)
|
| 181 |
+
with gr.Row():
|
| 182 |
+
gr.Markdown('''Try a different <b>seed</b> if the result is unsatisfying. Good Luck :)''')
|
| 183 |
+
with gr.Row():
|
| 184 |
+
seed = gr.Number(42, label='Seed', show_label=True)
|
| 185 |
+
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False)
|
| 186 |
+
# remesh = gr.Checkbox(value=False, label='Remesh')
|
| 187 |
+
# symmetry = gr.Checkbox(value=False, label='Symmetry(TBD)', interactive=False)
|
| 188 |
+
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
| 189 |
+
|
| 190 |
+
with gr.Row():
|
| 191 |
+
gr.Examples(
|
| 192 |
+
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
|
| 193 |
+
inputs=[image_input],
|
| 194 |
+
examples_per_page=8
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
with gr.Column(scale=4):
|
| 198 |
+
with gr.Row():
|
| 199 |
+
output_model_obj = gr.Model3D(
|
| 200 |
+
label="Output Model (OBJ Format)",
|
| 201 |
+
camera_position=(90.0, 90.0, 3.5),
|
| 202 |
+
interactive=False,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
with gr.Row():
|
| 206 |
+
view_front = gr.Image(label="Front", interactive=True, show_label=True)
|
| 207 |
+
view_right = gr.Image(label="Right", interactive=True, show_label=True)
|
| 208 |
+
view_back = gr.Image(label="Back", interactive=True, show_label=True)
|
| 209 |
+
view_left = gr.Image(label="Left", interactive=True, show_label=True)
|
| 210 |
+
|
| 211 |
+
# with gr.Accordion('Advanced options', open=False):
|
| 212 |
+
with gr.Row(equal_height=True):
|
| 213 |
+
run_mv_btn = gr.Button('Only Generate 2D', interactive=True)
|
| 214 |
+
run_3d_btn = gr.Button('Only Generate 3D', interactive=True)
|
| 215 |
+
|
| 216 |
+
with gr.Accordion('Advanced options (2D)', open=False):
|
| 217 |
+
with gr.Row():
|
| 218 |
+
crop_size = gr.Number(224, label='Crop size')
|
| 219 |
+
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=mvimg_model_config_list)
|
| 220 |
+
|
| 221 |
+
with gr.Row():
|
| 222 |
+
foreground_ratio = gr.Slider(
|
| 223 |
+
label="Foreground Ratio",
|
| 224 |
+
minimum=0.5,
|
| 225 |
+
maximum=1.0,
|
| 226 |
+
value=1.0,
|
| 227 |
+
step=0.05,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
with gr.Row():
|
| 231 |
+
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
|
| 232 |
+
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
|
| 233 |
+
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True)
|
| 234 |
+
|
| 235 |
+
with gr.Row():
|
| 236 |
+
mvimg_guidance_scale = gr.Number(value=3.5, minimum=3, maximum=10, label="2D Guidance Scale")
|
| 237 |
+
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps", precision=0)
|
| 238 |
+
|
| 239 |
+
with gr.Accordion('Advanced options (3D)', open=False):
|
| 240 |
+
with gr.Row():
|
| 241 |
+
guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0)
|
| 242 |
+
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps", precision=0)
|
| 243 |
+
|
| 244 |
+
with gr.Row():
|
| 245 |
+
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys()))
|
| 246 |
+
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1)
|
| 247 |
+
|
| 248 |
+
gr.Markdown(_CITE_)
|
| 249 |
+
|
| 250 |
+
outputs = [output_model_obj]
|
| 251 |
+
rmbg = RMBG(device)
|
| 252 |
+
|
| 253 |
+
gen_mvimg = GenMVImage(device)
|
| 254 |
+
model = load_model(ckpt_path, config_path, device)
|
| 255 |
+
|
| 256 |
+
run_btn.click(fn=check_input_image, inputs=[image_input]
|
| 257 |
+
).success(
|
| 258 |
+
fn=rmbg.run,
|
| 259 |
+
inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color],
|
| 260 |
+
outputs=[image_input]
|
| 261 |
+
).success(
|
| 262 |
+
fn=gen_mvimg.run,
|
| 263 |
+
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
| 264 |
+
outputs=[view_front, view_right, view_back, view_left]
|
| 265 |
+
).success(
|
| 266 |
+
fn=image2mesh,
|
| 267 |
+
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
|
| 268 |
+
outputs=outputs,
|
| 269 |
+
api_name="generate_img2obj")
|
| 270 |
+
run_mv_btn.click(fn=gen_mvimg.run,
|
| 271 |
+
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
| 272 |
+
outputs=[view_front, view_right, view_back, view_left]
|
| 273 |
+
)
|
| 274 |
+
run_3d_btn.click(fn=image2mesh,
|
| 275 |
+
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
|
| 276 |
+
outputs=outputs,
|
| 277 |
+
api_name="generate_img2obj")
|
| 278 |
+
|
| 279 |
+
demo.queue().launch(share=True, allowed_paths=[args.cached_dir])
|
gradio_app.py
CHANGED
|
@@ -64,9 +64,26 @@ CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so
|
|
| 64 |
π§ **Contact**
|
| 65 |
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
|
| 66 |
"""
|
|
|
|
| 67 |
|
| 68 |
model = None
|
| 69 |
cached_dir = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
@spaces.GPU
|
| 72 |
def image2mesh(view_front: np.ndarray,
|
|
@@ -134,7 +151,14 @@ if __name__=="__main__":
|
|
| 134 |
os.makedirs(args.cached_dir, exist_ok=True)
|
| 135 |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
| 136 |
print(f"using device: {device}")
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
# for multi-view images generation
|
| 139 |
background_choice = OrderedDict({
|
| 140 |
"Alpha as Mask": "Alpha as Mask",
|
|
@@ -250,7 +274,7 @@ if __name__=="__main__":
|
|
| 250 |
outputs = [output_model_obj]
|
| 251 |
rmbg = RMBG(device)
|
| 252 |
|
| 253 |
-
gen_mvimg = GenMVImage(device)
|
| 254 |
model = load_model(ckpt_path, config_path, device)
|
| 255 |
|
| 256 |
run_btn.click(fn=check_input_image, inputs=[image_input]
|
|
@@ -259,7 +283,7 @@ if __name__=="__main__":
|
|
| 259 |
inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color],
|
| 260 |
outputs=[image_input]
|
| 261 |
).success(
|
| 262 |
-
fn=gen_mvimg
|
| 263 |
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
| 264 |
outputs=[view_front, view_right, view_back, view_left]
|
| 265 |
).success(
|
|
@@ -267,7 +291,7 @@ if __name__=="__main__":
|
|
| 267 |
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
|
| 268 |
outputs=outputs,
|
| 269 |
api_name="generate_img2obj")
|
| 270 |
-
run_mv_btn.click(fn=gen_mvimg
|
| 271 |
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
| 272 |
outputs=[view_front, view_right, view_back, view_left]
|
| 273 |
)
|
|
|
|
| 64 |
π§ **Contact**
|
| 65 |
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
|
| 66 |
"""
|
| 67 |
+
from apps.third_party.CRM.pipelines import TwoStagePipeline
|
| 68 |
|
| 69 |
model = None
|
| 70 |
cached_dir = None
|
| 71 |
+
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
|
| 72 |
+
stage1_sampler_config = stage1_config.sampler
|
| 73 |
+
stage1_model_config = stage1_config.models
|
| 74 |
+
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
|
| 75 |
+
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
|
| 76 |
+
crm_pipeline = None
|
| 77 |
+
|
| 78 |
+
@spaces.GPU
|
| 79 |
+
def gen_mvimg(
|
| 80 |
+
mvimg_model, text, image, crop_size, seed, guidance_scale, step
|
| 81 |
+
):
|
| 82 |
+
global crm_pipeline
|
| 83 |
+
crm_pipeline.set_seed(seed)
|
| 84 |
+
rt_dict = crm_pipeline(image, scale=guidance_scale, step=step)
|
| 85 |
+
mv_imgs = rt_dict["stage1_images"]
|
| 86 |
+
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
|
| 87 |
|
| 88 |
@spaces.GPU
|
| 89 |
def image2mesh(view_front: np.ndarray,
|
|
|
|
| 151 |
os.makedirs(args.cached_dir, exist_ok=True)
|
| 152 |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
| 153 |
print(f"using device: {device}")
|
| 154 |
+
|
| 155 |
+
crm_pipeline = TwoStagePipeline(
|
| 156 |
+
stage1_model_config,
|
| 157 |
+
stage1_sampler_config,
|
| 158 |
+
device=device,
|
| 159 |
+
dtype=torch.float16
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
# for multi-view images generation
|
| 163 |
background_choice = OrderedDict({
|
| 164 |
"Alpha as Mask": "Alpha as Mask",
|
|
|
|
| 274 |
outputs = [output_model_obj]
|
| 275 |
rmbg = RMBG(device)
|
| 276 |
|
| 277 |
+
# gen_mvimg = GenMVImage(device)
|
| 278 |
model = load_model(ckpt_path, config_path, device)
|
| 279 |
|
| 280 |
run_btn.click(fn=check_input_image, inputs=[image_input]
|
|
|
|
| 283 |
inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color],
|
| 284 |
outputs=[image_input]
|
| 285 |
).success(
|
| 286 |
+
fn=gen_mvimg,
|
| 287 |
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
| 288 |
outputs=[view_front, view_right, view_back, view_left]
|
| 289 |
).success(
|
|
|
|
| 291 |
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
|
| 292 |
outputs=outputs,
|
| 293 |
api_name="generate_img2obj")
|
| 294 |
+
run_mv_btn.click(fn=gen_mvimg,
|
| 295 |
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
| 296 |
outputs=[view_front, view_right, view_back, view_left]
|
| 297 |
)
|