Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,12 +2,13 @@ import gradio as gr
|
|
| 2 |
import tensorflow as tf
|
| 3 |
import numpy as np
|
| 4 |
import cv2
|
|
|
|
| 5 |
from huggingface_hub import from_pretrained_keras
|
| 6 |
|
| 7 |
def resize_image(img_in,input_height,input_width):
|
| 8 |
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
|
| 9 |
|
| 10 |
-
def visualize_model_output(prediction):
|
| 11 |
unique_classes = np.unique(prediction[:,:,0])
|
| 12 |
rgb_colors = {'0' : [0, 0, 0],
|
| 13 |
'1' : [255, 0, 0],
|
|
@@ -37,7 +38,13 @@ def visualize_model_output(prediction):
|
|
| 37 |
output[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1]
|
| 38 |
output[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2]
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
def do_prediction(model_name, img):
|
|
@@ -169,7 +176,7 @@ def do_prediction(model_name, img):
|
|
| 169 |
'''
|
| 170 |
#prediction_true = prediction_true * -1
|
| 171 |
#prediction_true = prediction_true + 1
|
| 172 |
-
return "No numerical output", visualize_model_output(prediction_true)
|
| 173 |
|
| 174 |
# catch-all (we should not reach this)
|
| 175 |
case _:
|
|
|
|
| 2 |
import tensorflow as tf
|
| 3 |
import numpy as np
|
| 4 |
import cv2
|
| 5 |
+
from PIL import Image
|
| 6 |
from huggingface_hub import from_pretrained_keras
|
| 7 |
|
| 8 |
def resize_image(img_in,input_height,input_width):
|
| 9 |
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
|
| 10 |
|
| 11 |
+
def visualize_model_output(prediction, img):
|
| 12 |
unique_classes = np.unique(prediction[:,:,0])
|
| 13 |
rgb_colors = {'0' : [0, 0, 0],
|
| 14 |
'1' : [255, 0, 0],
|
|
|
|
| 38 |
output[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1]
|
| 39 |
output[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2]
|
| 40 |
|
| 41 |
+
output = output.astype(np.uint8)
|
| 42 |
+
im_pil_output = Image.fromarray(output)
|
| 43 |
+
im_pil = Image.fromarray(img)
|
| 44 |
+
|
| 45 |
+
im_pil.paste(im_pil_output, (0,0))
|
| 46 |
+
|
| 47 |
+
return im_pil.astype(np.uint8)
|
| 48 |
|
| 49 |
|
| 50 |
def do_prediction(model_name, img):
|
|
|
|
| 176 |
'''
|
| 177 |
#prediction_true = prediction_true * -1
|
| 178 |
#prediction_true = prediction_true + 1
|
| 179 |
+
return "No numerical output", visualize_model_output(prediction_true,img)
|
| 180 |
|
| 181 |
# catch-all (we should not reach this)
|
| 182 |
case _:
|