Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -76,7 +76,7 @@ def return_num_columns(img):
|
|
| 76 |
return num_col
|
| 77 |
|
| 78 |
def return_scaled_image(img, num_col, width_early, model_name):
|
| 79 |
-
|
| 80 |
if num_col == 1 and width_early < 1100:
|
| 81 |
img_w_new = 2000
|
| 82 |
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000)
|
|
@@ -129,7 +129,7 @@ def return_scaled_image(img, num_col, width_early, model_name):
|
|
| 129 |
img_w_new = width_early
|
| 130 |
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
| 131 |
img_new = resize_image(img, img_h_new, img_w_new)
|
| 132 |
-
|
| 133 |
if num_col == 1:
|
| 134 |
img_w_new = 1000
|
| 135 |
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
@@ -153,8 +153,8 @@ def return_scaled_image(img, num_col, width_early, model_name):
|
|
| 153 |
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 154 |
img_resized = resize_image(img,img_h_new, img_w_new )
|
| 155 |
|
| 156 |
-
|
| 157 |
-
return
|
| 158 |
|
| 159 |
def do_prediction(model_name, img):
|
| 160 |
img_org = np.copy(img)
|
|
|
|
| 76 |
return num_col
|
| 77 |
|
| 78 |
def return_scaled_image(img, num_col, width_early, model_name):
|
| 79 |
+
if model_name== ("SBB/eynollah-main-regions-aug-rotation" | "SBB/eynollah-main-regions-aug-scaling" | "SBB/eynollah-main-regions-ensembled"):
|
| 80 |
if num_col == 1 and width_early < 1100:
|
| 81 |
img_w_new = 2000
|
| 82 |
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000)
|
|
|
|
| 129 |
img_w_new = width_early
|
| 130 |
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
| 131 |
img_new = resize_image(img, img_h_new, img_w_new)
|
| 132 |
+
elif model_name=="SBB/eynollah-main-regions":
|
| 133 |
if num_col == 1:
|
| 134 |
img_w_new = 1000
|
| 135 |
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
| 153 |
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 154 |
img_resized = resize_image(img,img_h_new, img_w_new )
|
| 155 |
|
| 156 |
+
img_new = otsu_copy_binary(img_resized)
|
| 157 |
+
return img_new
|
| 158 |
|
| 159 |
def do_prediction(model_name, img):
|
| 160 |
img_org = np.copy(img)
|