Spaces:
Runtime error
Runtime error
File size: 31,205 Bytes
7f41c98 3cf12d5 7f41c98 79472dd 3cf12d5 450c4d5 7c8b48f 7f41c98 79472dd 7f41c98 79472dd 7f41c98 450c4d5 3cf12d5 7f41c98 3cf12d5 7f41c98 450c4d5 e3f8aa5 450c4d5 e3f8aa5 7f41c98 7c8b48f 79472dd 7f41c98 79472dd 7f41c98 79472dd 7f41c98 7c8b48f 1576817 7f41c98 1576817 7f41c98 79472dd 7f41c98 1576817 ea900ba 1576817 79472dd 1576817 ea900ba 1576817 ea900ba 1576817 ea900ba 1576817 7f41c98 1576817 79472dd 7f41c98 79472dd 9417719 2fe2175 7f41c98 79472dd 7f41c98 805b344 7f41c98 79472dd 7f41c98 2fe2175 7f41c98 79472dd 7f41c98 79472dd 450c4d5 1576817 450c4d5 805b344 1576817 450c4d5 805b344 450c4d5 805b344 450c4d5 805b344 450c4d5 805b344 450c4d5 79472dd 7f41c98 805b344 79472dd 805b344 7f41c98 79472dd 7f41c98 79472dd 7f41c98 79472dd 7f41c98 79472dd 7f41c98 79472dd 7f41c98 79472dd 805b344 7f41c98 805b344 7f41c98 79472dd 7f41c98 79472dd 2fe2175 7f41c98 805b344 7f41c98 805b344 450c4d5 2fe2175 7f41c98 450c4d5 7f41c98 79472dd 7f41c98 805b344 ea900ba 7f41c98 7c8b48f 805b344 7c8b48f 805b344 7c8b48f 7f41c98 805b344 52c67f1 805b344 ea900ba 805b344 52c67f1 805b344 52c67f1 805b344 ea900ba 805b344 ea900ba 52c67f1 7c8b48f 52c67f1 ea900ba 805b344 fe80389 805b344 fe80389 805b344 fe80389 805b344 fe80389 805b344 fe80389 805b344 fe80389 805b344 7f41c98 0bdab7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
import gradio as gr
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import yfinance as yf
import torch
from chronos import ChronosPipeline
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.preprocessing import MinMaxScaler
import plotly.express as px
from typing import Dict, List, Tuple, Optional
import json
import spaces
import gc
import pytz
# Initialize global variables
pipeline = None
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler.fit_transform([[-1, 1]])
def clear_gpu_memory():
"""Clear GPU memory cache"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@spaces.GPU
def load_pipeline():
"""Load the Chronos model with GPU configuration"""
global pipeline
try:
if pipeline is None:
clear_gpu_memory()
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-large",
device_map="auto", # Let the machine choose the best device
torch_dtype=torch.float16, # Use float16 for better memory efficiency
low_cpu_mem_usage=True
)
pipeline.model = pipeline.model.eval()
return pipeline
except Exception as e:
print(f"Error loading pipeline: {str(e)}")
raise RuntimeError(f"Failed to load model: {str(e)}")
def is_market_open() -> bool:
"""Check if the market is currently open"""
now = datetime.now()
# Check if it's a weekday (0 = Monday, 6 = Sunday)
if now.weekday() >= 5: # Saturday or Sunday
return False
# Check if it's during market hours (9:30 AM - 4:00 PM ET)
et_time = now.astimezone(pytz.timezone('US/Eastern'))
market_open = et_time.replace(hour=9, minute=30, second=0, microsecond=0)
market_close = et_time.replace(hour=16, minute=0, second=0, microsecond=0)
return market_open <= et_time <= market_close
def get_next_trading_day() -> datetime:
"""Get the next trading day"""
now = datetime.now()
next_day = now + timedelta(days=1)
# Skip weekends
while next_day.weekday() >= 5: # Saturday or Sunday
next_day += timedelta(days=1)
return next_day
def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int = 365) -> pd.DataFrame:
"""
Fetch historical data using yfinance.
Args:
symbol (str): The stock symbol (e.g., 'AAPL')
timeframe (str): The timeframe for data ('1d', '1h', '15m')
lookback_days (int): Number of days to look back
Returns:
pd.DataFrame: Historical data with OHLCV and technical indicators
"""
try:
# Check if market is open for intraday data
if timeframe in ["1h", "15m"] and not is_market_open():
next_trading_day = get_next_trading_day()
raise Exception(f"Market is currently closed. Next trading day is {next_trading_day.strftime('%Y-%m-%d')}")
# Map timeframe to yfinance interval and adjust lookback period
tf_map = {
"1d": "1d",
"1h": "1h",
"15m": "15m"
}
interval = tf_map.get(timeframe, "1d")
# Adjust lookback period based on timeframe
if timeframe == "1h":
lookback_days = min(lookback_days, 30) # Yahoo limits hourly data to 30 days
elif timeframe == "15m":
lookback_days = min(lookback_days, 5) # Yahoo limits 15m data to 5 days
# Calculate date range
end_date = datetime.now()
start_date = end_date - timedelta(days=lookback_days)
# Fetch data using yfinance
ticker = yf.Ticker(symbol)
df = ticker.history(start=start_date, end=end_date, interval=interval)
if df.empty:
raise Exception(f"No data available for {symbol} in {timeframe} timeframe")
# Get additional info for structured products
info = ticker.info
df['Market_Cap'] = info.get('marketCap', None)
df['Sector'] = info.get('sector', None)
df['Industry'] = info.get('industry', None)
df['Dividend_Yield'] = info.get('dividendYield', None)
# Calculate technical indicators with adjusted windows based on timeframe
if timeframe == "1d":
sma_window_20 = 20
sma_window_50 = 50
sma_window_200 = 200
vol_window = 20
elif timeframe == "1h":
sma_window_20 = 20 * 6 # 5 trading days
sma_window_50 = 50 * 6 # ~10 trading days
sma_window_200 = 200 * 6 # ~40 trading days
vol_window = 20 * 6
else: # 15m
sma_window_20 = 20 * 24 # 5 trading days
sma_window_50 = 50 * 24 # ~10 trading days
sma_window_200 = 200 * 24 # ~40 trading days
vol_window = 20 * 24
df['SMA_20'] = df['Close'].rolling(window=sma_window_20).mean()
df['SMA_50'] = df['Close'].rolling(window=sma_window_50).mean()
df['SMA_200'] = df['Close'].rolling(window=sma_window_200).mean()
df['RSI'] = calculate_rsi(df['Close'])
df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
# Calculate returns and volatility
df['Returns'] = df['Close'].pct_change()
df['Volatility'] = df['Returns'].rolling(window=vol_window).std()
df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252)
# Calculate drawdown metrics
df['Rolling_Max'] = df['Close'].rolling(window=len(df), min_periods=1).max()
df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
df['Max_Drawdown'] = df['Drawdown'].rolling(window=len(df), min_periods=1).min()
# Calculate liquidity metrics
df['Avg_Daily_Volume'] = df['Volume'].rolling(window=vol_window).mean()
df['Volume_Volatility'] = df['Volume'].rolling(window=vol_window).std()
# Drop NaN values
df = df.dropna()
if len(df) < 2:
raise Exception(f"Insufficient data points for {symbol} in {timeframe} timeframe")
return df
except Exception as e:
raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
"""Calculate Relative Strength Index"""
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
return 100 - (100 / (1 + rs))
def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
"""Calculate MACD and Signal line"""
exp1 = prices.ewm(span=fast, adjust=False).mean()
exp2 = prices.ewm(span=slow, adjust=False).mean()
macd = exp1 - exp2
signal_line = macd.ewm(span=signal, adjust=False).mean()
return macd, signal_line
def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
"""Calculate Bollinger Bands"""
middle_band = prices.rolling(window=period).mean()
std = prices.rolling(window=period).std()
upper_band = middle_band + (std * std_dev)
lower_band = middle_band - (std * std_dev)
return upper_band, middle_band, lower_band
@spaces.GPU
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos") -> Tuple[Dict, go.Figure]:
"""
Make prediction using selected strategy.
Args:
symbol (str): Stock symbol
timeframe (str): Data timeframe ('1d', '1h', '15m')
prediction_days (int): Number of days to predict
strategy (str): Prediction strategy to use
Returns:
Tuple[Dict, go.Figure]: Trading signals and visualization plot
"""
try:
# Get historical data
df = get_historical_data(symbol, timeframe)
if strategy == "chronos":
try:
# Prepare data for Chronos
returns = df['Returns'].values
normalized_returns = (returns - returns.mean()) / returns.std()
# Ensure we have enough data points
min_data_points = 64 # Minimum required by Chronos
if len(normalized_returns) < min_data_points:
# Pad the data with the last value
padding = np.full(min_data_points - len(normalized_returns), normalized_returns[-1])
normalized_returns = np.concatenate([padding, normalized_returns])
context = torch.tensor(normalized_returns.reshape(-1, 1), dtype=torch.float32)
# Make prediction with GPU acceleration
pipe = load_pipeline()
# Adjust prediction length based on timeframe
if timeframe == "1d":
max_prediction_length = 64 # Maximum 64 days for daily data
elif timeframe == "1h":
max_prediction_length = 168 # Maximum 7 days (168 hours) for hourly data
else: # 15m
max_prediction_length = 192 # Maximum 2 days (192 15-minute intervals) for 15m data
# Convert prediction_days to appropriate intervals
if timeframe == "1d":
actual_prediction_length = min(prediction_days, max_prediction_length)
elif timeframe == "1h":
actual_prediction_length = min(prediction_days * 24, max_prediction_length)
else: # 15m
actual_prediction_length = min(prediction_days * 96, max_prediction_length)
# Ensure prediction length is at least 1
actual_prediction_length = max(1, actual_prediction_length)
with torch.inference_mode():
prediction = pipe.predict(
context=context,
prediction_length=actual_prediction_length,
num_samples=100
).detach().cpu().numpy()
mean_pred = prediction.mean(axis=0)
std_pred = prediction.std(axis=0)
# If we had to limit the prediction length, extend the prediction
if actual_prediction_length < prediction_days:
last_pred = mean_pred[-1]
last_std = std_pred[-1]
extension = np.array([last_pred * (1 + np.random.normal(0, last_std, prediction_days - actual_prediction_length))])
mean_pred = np.concatenate([mean_pred, extension])
std_pred = np.concatenate([std_pred, np.full(prediction_days - actual_prediction_length, last_std)])
except Exception as e:
print(f"Chronos prediction failed: {str(e)}")
print("Falling back to technical analysis")
strategy = "technical"
if strategy == "technical":
# Technical analysis based prediction
last_price = df['Close'].iloc[-1]
rsi = df['RSI'].iloc[-1]
macd = df['MACD'].iloc[-1]
macd_signal = df['MACD_Signal'].iloc[-1]
# Simple prediction based on technical indicators
trend = 1 if (rsi > 50 and macd > macd_signal) else -1
volatility = df['Volatility'].iloc[-1]
# Generate predictions
mean_pred = np.array([last_price * (1 + trend * volatility * i) for i in range(1, prediction_days + 1)])
std_pred = np.array([volatility * last_price * i for i in range(1, prediction_days + 1)])
# Create prediction dates based on timeframe
last_date = df.index[-1]
if timeframe == "1d":
pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
elif timeframe == "1h":
pred_dates = pd.date_range(start=last_date + timedelta(hours=1), periods=prediction_days * 24)
else: # 15m
pred_dates = pd.date_range(start=last_date + timedelta(minutes=15), periods=prediction_days * 96)
# Create visualization
fig = make_subplots(rows=3, cols=1,
shared_xaxes=True,
vertical_spacing=0.05,
subplot_titles=('Price Prediction', 'Technical Indicators', 'Volume'))
# Add historical price
fig.add_trace(
go.Scatter(x=df.index, y=df['Close'], name='Historical Price',
line=dict(color='blue')),
row=1, col=1
)
# Add prediction mean
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred, name='Predicted Price',
line=dict(color='red')),
row=1, col=1
)
# Add confidence intervals
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred + 1.96 * std_pred,
fill=None, mode='lines', line_color='rgba(255,0,0,0.2)',
name='Upper Bound'),
row=1, col=1
)
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred - 1.96 * std_pred,
fill='tonexty', mode='lines', line_color='rgba(255,0,0,0.2)',
name='Lower Bound'),
row=1, col=1
)
# Add technical indicators
fig.add_trace(
go.Scatter(x=df.index, y=df['RSI'], name='RSI',
line=dict(color='purple')),
row=2, col=1
)
fig.add_trace(
go.Scatter(x=df.index, y=df['MACD'], name='MACD',
line=dict(color='orange')),
row=2, col=1
)
fig.add_trace(
go.Scatter(x=df.index, y=df['MACD_Signal'], name='MACD Signal',
line=dict(color='green')),
row=2, col=1
)
# Add volume
fig.add_trace(
go.Bar(x=df.index, y=df['Volume'], name='Volume',
marker_color='gray'),
row=3, col=1
)
# Update layout with timeframe-specific settings
fig.update_layout(
title=f'{symbol} {timeframe} Analysis and Prediction',
xaxis_title='Date',
yaxis_title='Price',
height=1000,
showlegend=True
)
# Calculate trading signals
signals = calculate_trading_signals(df)
# Add prediction information to signals
signals.update({
"symbol": symbol,
"timeframe": timeframe,
"prediction": mean_pred.tolist(),
"confidence": std_pred.tolist(),
"dates": pred_dates.strftime('%Y-%m-%d %H:%M:%S').tolist(),
"strategy_used": strategy
})
return signals, fig
except Exception as e:
raise Exception(f"Prediction error: {str(e)}")
finally:
clear_gpu_memory()
def calculate_trading_signals(df: pd.DataFrame) -> Dict:
"""Calculate trading signals based on technical indicators"""
signals = {
"RSI": "Oversold" if df['RSI'].iloc[-1] < 30 else "Overbought" if df['RSI'].iloc[-1] > 70 else "Neutral",
"MACD": "Buy" if df['MACD'].iloc[-1] > df['MACD_Signal'].iloc[-1] else "Sell",
"Bollinger": "Buy" if df['Close'].iloc[-1] < df['BB_Lower'].iloc[-1] else "Sell" if df['Close'].iloc[-1] > df['BB_Upper'].iloc[-1] else "Hold",
"SMA": "Buy" if df['SMA_20'].iloc[-1] > df['SMA_50'].iloc[-1] else "Sell"
}
# Calculate overall signal
buy_signals = sum(1 for signal in signals.values() if signal == "Buy")
sell_signals = sum(1 for signal in signals.values() if signal == "Sell")
if buy_signals > sell_signals:
signals["Overall"] = "Buy"
elif sell_signals > buy_signals:
signals["Overall"] = "Sell"
else:
signals["Overall"] = "Hold"
return signals
def create_interface():
"""Create the Gradio interface with separate tabs for different timeframes"""
with gr.Blocks(title="Structured Product Analysis") as demo:
gr.Markdown("# Structured Product Analysis")
gr.Markdown("Analyze stocks for inclusion in structured financial products with extended time horizons.")
# Add market status message
market_status = "Market is currently closed" if not is_market_open() else "Market is currently open"
next_trading_day = get_next_trading_day()
gr.Markdown(f"""
### Market Status: {market_status}
Next trading day: {next_trading_day.strftime('%Y-%m-%d')}
""")
with gr.Tabs() as tabs:
# Daily Analysis Tab
with gr.TabItem("Daily Analysis"):
with gr.Row():
with gr.Column():
daily_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
daily_prediction_days = gr.Slider(
minimum=1,
maximum=365,
value=30,
step=1,
label="Days to Predict"
)
daily_lookback_days = gr.Slider(
minimum=1,
maximum=3650,
value=365,
step=1,
label="Historical Lookback (Days)"
)
daily_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
daily_predict_btn = gr.Button("Analyze Stock")
with gr.Column():
daily_plot = gr.Plot(label="Analysis and Prediction")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
daily_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
daily_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
daily_sector_metrics = gr.JSON(label="Sector Metrics")
gr.Markdown("### Trading Signals")
daily_signals = gr.JSON(label="Trading Signals")
# Hourly Analysis Tab
with gr.TabItem("Hourly Analysis"):
with gr.Row():
with gr.Column():
hourly_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
hourly_prediction_days = gr.Slider(
minimum=1,
maximum=7, # Limited to 7 days for hourly predictions
value=3,
step=1,
label="Days to Predict"
)
hourly_lookback_days = gr.Slider(
minimum=1,
maximum=30, # Limited to 30 days for hourly data
value=14,
step=1,
label="Historical Lookback (Days)"
)
hourly_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
hourly_predict_btn = gr.Button("Analyze Stock")
gr.Markdown("""
**Note for Hourly Analysis:**
- Maximum lookback period: 30 days (Yahoo Finance limit)
- Maximum prediction period: 7 days
- Data is only available during market hours
""")
with gr.Column():
hourly_plot = gr.Plot(label="Analysis and Prediction")
hourly_signals = gr.JSON(label="Trading Signals")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
hourly_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
hourly_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
hourly_sector_metrics = gr.JSON(label="Sector Metrics")
# 15-Minute Analysis Tab
with gr.TabItem("15-Minute Analysis"):
with gr.Row():
with gr.Column():
min15_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
min15_prediction_days = gr.Slider(
minimum=1,
maximum=2, # Limited to 2 days for 15-minute predictions
value=1,
step=1,
label="Days to Predict"
)
min15_lookback_days = gr.Slider(
minimum=1,
maximum=5, # Yahoo Finance limit for 15-minute data
value=3,
step=1,
label="Historical Lookback (Days)"
)
min15_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
min15_predict_btn = gr.Button("Analyze Stock")
gr.Markdown("""
**Note for 15-Minute Analysis:**
- Maximum lookback period: 5 days (Yahoo Finance limit)
- Maximum prediction period: 2 days
- Data is only available during market hours
- Requires at least 64 data points for Chronos predictions
""")
with gr.Column():
min15_plot = gr.Plot(label="Analysis and Prediction")
min15_signals = gr.JSON(label="Trading Signals")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
min15_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
min15_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
min15_sector_metrics = gr.JSON(label="Sector Metrics")
def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy):
try:
signals, fig = make_prediction(symbol, timeframe, prediction_days, strategy)
# Get historical data for additional metrics
df = get_historical_data(symbol, timeframe, lookback_days)
# Calculate structured product metrics
product_metrics = {
"Market_Cap": df['Market_Cap'].iloc[-1],
"Sector": df['Sector'].iloc[-1],
"Industry": df['Industry'].iloc[-1],
"Dividend_Yield": df['Dividend_Yield'].iloc[-1],
"Avg_Daily_Volume": df['Avg_Daily_Volume'].iloc[-1],
"Volume_Volatility": df['Volume_Volatility'].iloc[-1]
}
# Calculate risk metrics
risk_metrics = {
"Annualized_Volatility": df['Annualized_Vol'].iloc[-1],
"Max_Drawdown": df['Max_Drawdown'].iloc[-1],
"Current_Drawdown": df['Drawdown'].iloc[-1],
"Sharpe_Ratio": (df['Returns'].mean() * 252) / (df['Returns'].std() * np.sqrt(252)),
"Sortino_Ratio": (df['Returns'].mean() * 252) / (df['Returns'][df['Returns'] < 0].std() * np.sqrt(252))
}
# Calculate sector metrics
sector_metrics = {
"Sector": df['Sector'].iloc[-1],
"Industry": df['Industry'].iloc[-1],
"Market_Cap_Rank": "Large" if df['Market_Cap'].iloc[-1] > 1e10 else "Mid" if df['Market_Cap'].iloc[-1] > 1e9 else "Small",
"Liquidity_Score": "High" if df['Avg_Daily_Volume'].iloc[-1] > 1e6 else "Medium" if df['Avg_Daily_Volume'].iloc[-1] > 1e5 else "Low"
}
return signals, fig, product_metrics, risk_metrics, sector_metrics
except Exception as e:
error_message = str(e)
if "Market is currently closed" in error_message:
error_message = f"{error_message}. Please try again during market hours or use daily timeframe."
elif "Insufficient data points" in error_message:
error_message = f"Not enough data available for {symbol} in {timeframe} timeframe. Please try a different timeframe or symbol."
elif "no price data found" in error_message:
error_message = f"No data available for {symbol} in {timeframe} timeframe. Please try a different timeframe or symbol."
raise gr.Error(error_message)
# Daily analysis button click
def daily_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
"""
Process daily timeframe stock analysis and generate predictions.
Args:
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
pd (int): Number of days to predict (1-365)
ld (int): Historical lookback period in days (1-3650)
st (str): Prediction strategy to use ("chronos" or "technical")
Returns:
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
- Trading signals dictionary
- Plotly figure with price and technical analysis
- Product metrics dictionary
- Risk metrics dictionary
- Sector metrics dictionary
Example:
>>> daily_analysis("AAPL", 30, 365, "chronos")
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
"""
return analyze_stock(s, "1d", pd, ld, st)
daily_predict_btn.click(
fn=daily_analysis,
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy],
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics]
)
# Hourly analysis button click
def hourly_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
"""
Process hourly timeframe stock analysis and generate predictions.
Args:
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
pd (int): Number of days to predict (1-7)
ld (int): Historical lookback period in days (1-30)
st (str): Prediction strategy to use ("chronos" or "technical")
Returns:
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
- Trading signals dictionary
- Plotly figure with price and technical analysis
- Product metrics dictionary
- Risk metrics dictionary
- Sector metrics dictionary
Example:
>>> hourly_analysis("AAPL", 3, 14, "chronos")
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
"""
return analyze_stock(s, "1h", pd, ld, st)
hourly_predict_btn.click(
fn=hourly_analysis,
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy],
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics]
)
# 15-minute analysis button click
def min15_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
"""
Process 15-minute timeframe stock analysis and generate predictions.
Args:
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
pd (int): Number of days to predict (1-2)
ld (int): Historical lookback period in days (1-5)
st (str): Prediction strategy to use ("chronos" or "technical")
Returns:
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
- Trading signals dictionary
- Plotly figure with price and technical analysis
- Product metrics dictionary
- Risk metrics dictionary
- Sector metrics dictionary
Example:
>>> min15_analysis("AAPL", 1, 3, "chronos")
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
"""
return analyze_stock(s, "15m", pd, ld, st)
min15_predict_btn.click(
fn=min15_analysis,
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy],
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True, ssr_mode=False, mcp_server=True) |