Spaces:
Runtime error
Runtime error
Updated app.py
Browse files
app.py
CHANGED
|
@@ -1,146 +1,88 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import random
|
| 4 |
-
from diffusers import DiffusionPipeline
|
| 5 |
import torch
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
with gr.
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
with gr.Row():
|
| 67 |
-
|
| 68 |
-
prompt = gr.Text(
|
| 69 |
-
label="Prompt",
|
| 70 |
-
show_label=False,
|
| 71 |
-
max_lines=1,
|
| 72 |
-
placeholder="Enter your prompt",
|
| 73 |
-
container=False,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
run_button = gr.Button("Run", scale=0)
|
| 77 |
-
|
| 78 |
-
result = gr.Image(label="Result", show_label=False)
|
| 79 |
-
|
| 80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 81 |
-
|
| 82 |
-
negative_prompt = gr.Text(
|
| 83 |
-
label="Negative prompt",
|
| 84 |
-
max_lines=1,
|
| 85 |
-
placeholder="Enter a negative prompt",
|
| 86 |
-
visible=False,
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
seed = gr.Slider(
|
| 90 |
-
label="Seed",
|
| 91 |
-
minimum=0,
|
| 92 |
-
maximum=MAX_SEED,
|
| 93 |
-
step=1,
|
| 94 |
-
value=0,
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 98 |
-
|
| 99 |
-
with gr.Row():
|
| 100 |
-
|
| 101 |
-
width = gr.Slider(
|
| 102 |
-
label="Width",
|
| 103 |
-
minimum=256,
|
| 104 |
-
maximum=MAX_IMAGE_SIZE,
|
| 105 |
-
step=32,
|
| 106 |
-
value=512,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
height = gr.Slider(
|
| 110 |
-
label="Height",
|
| 111 |
-
minimum=256,
|
| 112 |
-
maximum=MAX_IMAGE_SIZE,
|
| 113 |
-
step=32,
|
| 114 |
-
value=512,
|
| 115 |
)
|
| 116 |
-
|
| 117 |
-
with gr.
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
minimum=0.0,
|
| 122 |
-
maximum=10.0,
|
| 123 |
-
step=0.1,
|
| 124 |
-
value=0.0,
|
| 125 |
)
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
maximum=12,
|
| 131 |
-
step=1,
|
| 132 |
-
value=2,
|
| 133 |
)
|
| 134 |
-
|
| 135 |
-
gr.
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
fn = infer,
|
| 142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 143 |
-
outputs = [result]
|
| 144 |
)
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
+
from diffusers import DiffusionPipeline
|
| 5 |
+
from PIL import Image
|
| 6 |
|
| 7 |
+
|
| 8 |
+
# Text-to-Multi-View Diffusion pipeline
|
| 9 |
+
text_pipeline = DiffusionPipeline.from_pretrained(
|
| 10 |
+
"dylanebert/mvdream",
|
| 11 |
+
custom_pipeline="dylanebert/multi-view-diffusion",
|
| 12 |
+
torch_dtype=torch.float16,
|
| 13 |
+
trust_remote_code=True,
|
| 14 |
+
).to("cuda")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# Image-to-Multi-View Diffusion pipeline
|
| 18 |
+
image_pipeline = DiffusionPipeline.from_pretrained(
|
| 19 |
+
"dylanebert/multi-view-diffusion",
|
| 20 |
+
custom_pipeline="dylanebert/multi-view-diffusion",
|
| 21 |
+
torch_dtype=torch.float16,
|
| 22 |
+
trust_remote_code=True,
|
| 23 |
+
).to("cuda")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def create_image_grid(images):
|
| 27 |
+
images = [Image.fromarray((img * 255).astype("uint8")) for img in images]
|
| 28 |
+
|
| 29 |
+
width, height = images[0].size
|
| 30 |
+
grid_img = Image.new("RGB", (2 * width, 2 * height))
|
| 31 |
+
|
| 32 |
+
grid_img.paste(images[0], (0, 0))
|
| 33 |
+
grid_img.paste(images[1], (width, 0))
|
| 34 |
+
grid_img.paste(images[2], (0, height))
|
| 35 |
+
grid_img.paste(images[3], (width, height))
|
| 36 |
+
|
| 37 |
+
return grid_img
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@spaces.GPU
|
| 41 |
+
def text_to_mv(prompt):
|
| 42 |
+
images = text_pipeline(
|
| 43 |
+
prompt, guidance_scale=5, num_inference_steps=30, elevation=0
|
| 44 |
+
)
|
| 45 |
+
return create_image_grid(images)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
@spaces.GPU
|
| 49 |
+
def image_to_mv(image, prompt):
|
| 50 |
+
image = image.astype("float32") / 255.0
|
| 51 |
+
images = image_pipeline(
|
| 52 |
+
prompt, image, guidance_scale=5, num_inference_steps=30, elevation=0
|
| 53 |
+
)
|
| 54 |
+
return create_image_grid(images)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
with gr.Blocks() as demo:
|
| 58 |
+
with gr.Row():
|
| 59 |
+
with gr.Column():
|
| 60 |
+
with gr.Tab("Text Input"):
|
| 61 |
+
text_input = gr.Textbox(
|
| 62 |
+
lines=2,
|
| 63 |
+
show_label=False,
|
| 64 |
+
placeholder="Enter a prompt here (e.g. 'a cat statue')",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
)
|
| 66 |
+
text_btn = gr.Button("Generate Multi-View Images")
|
| 67 |
+
with gr.Tab("Image Input"):
|
| 68 |
+
image_input = gr.Image(
|
| 69 |
+
label="Image Input",
|
| 70 |
+
type="numpy",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
)
|
| 72 |
+
optional_text_input = gr.Textbox(
|
| 73 |
+
lines=2,
|
| 74 |
+
show_label=False,
|
| 75 |
+
placeholder="Enter an optional prompt here",
|
|
|
|
|
|
|
|
|
|
| 76 |
)
|
| 77 |
+
image_btn = gr.Button("Generate Multi-View Images")
|
| 78 |
+
with gr.Column():
|
| 79 |
+
output = gr.Image(label="Generated Images")
|
| 80 |
+
|
| 81 |
+
text_btn.click(fn=text_to_mv, inputs=text_input, outputs=output)
|
| 82 |
+
image_btn.click(
|
| 83 |
+
fn=image_to_mv, inputs=[image_input, optional_text_input], outputs=output
|
|
|
|
|
|
|
|
|
|
| 84 |
)
|
| 85 |
|
| 86 |
+
|
| 87 |
+
if __name__ == "__main__":
|
| 88 |
+
demo.queue().launch()
|