Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
|
| 7 |
+
|
| 8 |
+
def predict(input, history=[]):
|
| 9 |
+
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
| 10 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
| 11 |
+
history = model.generate(bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id).tolist()
|
| 12 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
| 13 |
+
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]
|
| 14 |
+
return response, history
|
| 15 |
+
|
| 16 |
+
gr.Interface(fn=predict,
|
| 17 |
+
inputs=["text", "state"],
|
| 18 |
+
outputs=["chatbot", "state"]).launch()
|