Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import google.generativeai as genai | |
from langchain.chains.question_answering import load_qa_chain | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Configure Gemini API | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
# Load Mistral model | |
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" | |
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
dtype = torch.bfloat16 | |
# Improved model loading with error handling | |
try: | |
mistral_model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
torch_dtype=dtype, | |
device_map=device | |
) | |
print(f"Mistral model loaded successfully on {device}") | |
except Exception as e: | |
print(f"Error loading Mistral model: {str(e)}") | |
mistral_model = None | |
def initialize(file_path, question): | |
try: | |
# Check if API key is set | |
api_key = os.getenv("GOOGLE_API_KEY") | |
if not api_key: | |
return "Error: GOOGLE_API_KEY environment variable is not set." | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is | |
not contained in the context, say "answer not available in context" \n\n | |
Context: \n {context}?\n | |
Question: \n {question} \n | |
Answer: | |
""" | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
if os.path.exists(file_path): | |
# Load and process PDF | |
pdf_loader = PyPDFLoader(file_path) | |
pages = pdf_loader.load_and_split() | |
if not pages: | |
return "Error: The PDF file appears to be empty or could not be processed." | |
context = "\n".join(str(page.page_content) for page in pages[:30]) | |
# Generate Gemini answer | |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
stuff_answer = stuff_chain( | |
{"input_documents": pages, "question": question, "context": context}, | |
return_only_outputs=True | |
) | |
gemini_answer = stuff_answer['output_text'] | |
# Use Mistral model for additional text generation | |
if mistral_model is not None: | |
mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:" | |
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device) | |
with torch.no_grad(): | |
mistral_outputs = mistral_model.generate( | |
mistral_inputs, | |
max_length=200, # Increased max length | |
min_length=20, # Set min length | |
do_sample=True, # Enable sampling | |
top_p=0.95, # Top-p sampling | |
temperature=0.7 # Temperature for creativity | |
) | |
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True) | |
# Clean up the output to get just the follow-up question | |
if "Generate a follow-up question:" in mistral_output: | |
mistral_output = mistral_output.split("Generate a follow-up question:")[1].strip() | |
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}" | |
else: | |
combined_output = f"Gemini Answer: {gemini_answer}\n\n(Mistral model unavailable)" | |
return combined_output | |
else: | |
return f"Error: File not found at path '{file_path}'. Please ensure the PDF file is valid." | |
except Exception as e: | |
import traceback | |
error_details = traceback.format_exc() | |
return f"An error occurred: {str(e)}\n\nDetails: {error_details}" | |
# Define Gradio Interface with improved error handling | |
def pdf_qa(file, question): | |
if file is None: | |
return "Please upload a PDF file first." | |
if not question or question.strip() == "": | |
return "Please enter a question about the document." | |
try: | |
return initialize(file.name, question) | |
except Exception as e: | |
import traceback | |
error_details = traceback.format_exc() | |
return f"Error processing request: {str(e)}\n\nDetails: {error_details}" | |
# Create Gradio Interface with additional options | |
demo = gr.Interface( | |
fn=pdf_qa, | |
inputs=[ | |
gr.File(label="Upload PDF File", file_types=[".pdf"]), | |
gr.Textbox(label="Ask about the document", placeholder="What is the main topic of this document?") | |
], | |
outputs=gr.Textbox(label="Answer - Combined Gemini and Mistral"), | |
title="RAG Knowledge Retrieval using Gemini API and Mistral Model", | |
description="Upload a PDF file and ask questions about the content. The system uses Gemini for answering and Mistral for generating follow-up questions.", | |
examples=[ | |
[None, "What are the main findings in this document?"], | |
[None, "Summarize the key points discussed in this paper."] | |
], | |
allow_flagging="never" | |
) | |
# Launch the app with additional parameters | |
if __name__ == "__main__": | |
demo.launch(share=True, debug=True) |