stt-fongbe / app.py
Ronaldodev's picture
[UPDATE] add api endpoint
0d7faff
raw
history blame
9.28 kB
import gradio as gr
import torch
import torchaudio
import librosa
import os
import base64
import io
import tempfile
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
from huggingface_hub import login
import logging
MODEL_NAME = "Ronaldodev/speech-to-text-fongbe"
HF_TOKEN = os.environ.get("HF_TOKEN")
model = None
processor = None
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_model():
"""Charger le modèle privé au démarrage"""
global model, processor
try:
logger.info("🔄 Chargement du modèle privé...")
if not HF_TOKEN:
raise ValueError("HF_TOKEN non configuré dans les secrets")
login(token=HF_TOKEN)
logger.info("✅ Authentification HF réussie")
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME)
processor = AutoProcessor.from_pretrained(MODEL_NAME)
logger.info("✅ Modèle chargé avec succès!")
return True
except Exception as e:
logger.error(f"❌ Erreur chargement: {e}")
return False
def process_audio_data(audio_data, sample_rate=None):
"""Fonction commune pour traiter les données audio"""
if model is None or processor is None:
raise Exception("Modèle non chargé")
# Convertir en mono si nécessaire
if len(audio_data.shape) > 1:
audio_data = audio_data.mean(axis=0)
# Convertir en tensor PyTorch
if not isinstance(audio_data, torch.Tensor):
waveform = torch.tensor(audio_data, dtype=torch.float32).unsqueeze(0)
else:
waveform = audio_data.unsqueeze(0) if audio_data.dim() == 1 else audio_data
# Resampling si nécessaire
if sample_rate and sample_rate != 16000:
logger.info(f"🔄 Resampling {sample_rate}Hz → 16000Hz")
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)
inputs = processor(
waveform.squeeze(),
sampling_rate=16000,
return_tensors="pt"
)
logger.info("🔄 Génération de la transcription...")
with torch.no_grad():
result = model.generate(
**inputs,
max_length=500,
do_sample=False,
num_beams=1
)
transcription = processor.batch_decode(result, skip_special_tokens=True)[0]
return transcription.strip()
def transcribe(audio):
"""Fonction pour l'interface Gradio (fichier)"""
if audio is None:
return "❌ Aucun fichier audio fourni"
try:
logger.info(f"🎵 Traitement audio: {audio}")
try:
waveform, sample_rate = torchaudio.load(audio)
logger.info(f"✅ Audio chargé avec torchaudio: {sample_rate}Hz")
except Exception as e:
logger.warning(f"⚠️ Torchaudio échoué, essai librosa: {e}")
waveform, sample_rate = librosa.load(audio, sr=None)
waveform = torch.tensor(waveform).unsqueeze(0)
logger.info(f"✅ Audio chargé avec librosa: {sample_rate}Hz")
transcription = process_audio_data(waveform, sample_rate)
logger.info(f"✅ Transcription réussie: '{transcription}'")
return transcription
except Exception as e:
error_msg = f"❌ Erreur de transcription: {str(e)}"
logger.error(error_msg)
return error_msg
def transcribe_api_base64(audio_base64):
"""API pour données base64"""
try:
logger.info("🔄 API: Traitement base64...")
# Décoder le base64
if audio_base64.startswith('data:'):
# Format: data:audio/wav;base64,XXXXX
audio_base64 = audio_base64.split(',')[1]
audio_bytes = base64.b64decode(audio_base64)
# Créer un fichier temporaire
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_file:
temp_file.write(audio_bytes)
temp_path = temp_file.name
try:
# Charger avec librosa
waveform, sample_rate = librosa.load(temp_path, sr=None)
waveform = torch.tensor(waveform)
transcription = process_audio_data(waveform, sample_rate)
logger.info(f"✅ API Transcription: '{transcription}'")
return {"success": True, "transcription": transcription}
finally:
# Nettoyer le fichier temporaire
os.unlink(temp_path)
except Exception as e:
error_msg = f"Erreur API base64: {str(e)}"
logger.error(error_msg)
return {"success": False, "error": error_msg}
def transcribe_api_file(audio_file):
"""API pour fichier audio direct"""
try:
logger.info("🔄 API: Traitement fichier...")
# Lire le fichier
audio_bytes = audio_file.read()
# Créer un fichier temporaire
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_file:
temp_file.write(audio_bytes)
temp_path = temp_file.name
try:
# Charger avec librosa
waveform, sample_rate = librosa.load(temp_path, sr=None)
waveform = torch.tensor(waveform)
transcription = process_audio_data(waveform, sample_rate)
logger.info(f"✅ API Transcription: '{transcription}'")
return {"success": True, "transcription": transcription}
finally:
# Nettoyer le fichier temporaire
os.unlink(temp_path)
except Exception as e:
error_msg = f"Erreur API fichier: {str(e)}"
logger.error(error_msg)
return {"success": False, "error": error_msg}
print("🚀 DÉMARRAGE API STT FONGBÉ - RONALDODEV")
print("=" * 50)
if load_model():
print("✅ Modèle chargé - Interface prête!")
model_status = "✅ Modèle chargé et prêt"
else:
print("❌ Erreur de chargement du modèle")
model_status = "❌ Erreur de chargement"
# Interface Gradio principale
with gr.Blocks(theme=gr.themes.Soft(), title="🎤 API STT Fongbé") as demo:
gr.Markdown(f"""
# 🎤 API STT Fongbé - Ronaldodev
**Reconnaissance vocale pour la langue Fongbé**
**Statut:** {model_status}
**Modèle:** `{MODEL_NAME}`
""")
with gr.Tab("🎵 Interface Utilisateur"):
audio_input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="🎤 Uploadez un fichier ou enregistrez directement"
)
transcription_output = gr.Textbox(
label="📝 Transcription en Fongbé",
placeholder="La transcription apparaîtra ici...",
lines=3
)
transcribe_btn = gr.Button("🔄 Transcrire", variant="primary")
transcribe_btn.click(
fn=transcribe,
inputs=audio_input,
outputs=transcription_output
)
with gr.Tab("🔌 API Documentation"):
gr.Markdown("""
## 📡 Endpoints API Disponibles
### 1. **POST** `/api/transcribe_base64`
Pour envoyer de l'audio en base64
**Headers:**
```
Content-Type: application/json
```
**Body:**
```json
{
"audio_base64": "data:audio/wav;base64,UklGRnoAAABXQVZF..."
}
```
**Réponse:**
```json
{
"success": true,
"transcription": "votre transcription ici"
}
```
### 2. **POST** `/api/transcribe_file`
Pour envoyer un fichier audio directement
**Headers:**
```
Content-Type: multipart/form-data
```
**Body:**
- `audio_file`: votre fichier audio (WAV, MP3, M4A...)
**Réponse:**
```json
{
"success": true,
"transcription": "votre transcription ici"
}
```
### 📱 Exemple d'utilisation
**Python:**
```python
import requests
import base64
# Méthode 1: Base64
with open("audio.wav", "rb") as f:
audio_b64 = base64.b64encode(f.read()).decode()
response = requests.post(
"https://ronaldodev-stt-fongbe.hf.space/api/transcribe_base64",
json={"audio_base64": f"data:audio/wav;base64,{audio_b64}"}
)
# Méthode 2: Fichier direct
with open("audio.wav", "rb") as f:
response = requests.post(
"https://ronaldodev-stt-fongbe.hf.space/api/transcribe_file",
files={"audio_file": f}
)
result = response.json()
print(result["transcription"])
```
**Flutter:**
```dart
// Fichier direct
var request = http.MultipartRequest(
'POST',
Uri.parse('https://ronaldodev-stt-fongbe.hf.space/api/transcribe_file')
);
request.files.add(await http.MultipartFile.fromPath('audio_file', audioPath));
var response = await request.send();
```
""")
# Ajouter les endpoints API personnalisés
demo.add_api_route(
"/api/transcribe_base64",
transcribe_api_base64,
methods=["POST"]
)
demo.add_api_route(
"/api/transcribe_file",
transcribe_api_file,
methods=["POST"]
)
demo.launch()