Spaces:
Sleeping
Sleeping
Commit
Β·
e8c3964
1
Parent(s):
bdb49ae
Added dashboard and experiments
Browse files- README.md +166 -3
- evaluation/__init__.py +1 -0
- evaluation/config.py +8 -0
- evaluation/stats/__init__.py +1 -0
- evaluation/utils/logger.py +56 -0
- scripts/dashboard.py +104 -0
- scripts/run_experiments.py +251 -0
- scripts/run_grid_experiments.py +239 -0
README.md
CHANGED
|
@@ -1,5 +1,168 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Below is a complete **README.md** you can drop into the repository root.
|
| 2 |
+
It walks through the codebase, explains how each layer aligns with the research-proposal objectives, and gives practical βgetting-startedβ steps for building indexes, running experiments, and producing statistical analyses.
|
| 3 |
|
| 4 |
+
---
|
| 5 |
|
| 6 |
+
````markdown
|
| 7 |
+
# Retrieval-Augmented Generation Evaluation Framework
|
| 8 |
+
*(Legal & Financial domains, with full regulatory-grade metrics)*
|
| 9 |
+
|
| 10 |
+
> **Project context** β This code implements the software artefacts promised in the research proposal
|
| 11 |
+
> β**Toward Comprehensive Evaluation of Retrieval-Augmented Generation Systems in Regulated Domains**.β
|
| 12 |
+
> Each folder corresponds to a work-package from the proposal: retrieval pipelines, metric library
|
| 13 |
+
> , robustness & statistical analysis, plus automation for Docker / CI.
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## 1. Quick start
|
| 18 |
+
|
| 19 |
+
```bash
|
| 20 |
+
# Clone and bootstrap
|
| 21 |
+
git clone https://github.com/<your-org>/rag-eval-framework.git
|
| 22 |
+
cd rag-eval-framework
|
| 23 |
+
python -m venv .venv && source .venv/bin/activate
|
| 24 |
+
pip install -r requirements.txt
|
| 25 |
+
pre-commit install # optional: local lint hooks
|
| 26 |
+
|
| 27 |
+
# Download / prepare a small corpus (makes ~200 docs)
|
| 28 |
+
bash scripts/download_data.sh
|
| 29 |
+
|
| 30 |
+
# Build sparse & dense indexes automatically on first run
|
| 31 |
+
python scripts/run_experiments.py \
|
| 32 |
+
--config configs/pipeline_hybrid_ce.yaml \
|
| 33 |
+
--queries data/sample_queries.jsonl
|
| 34 |
+
````
|
| 35 |
+
|
| 36 |
+
The first invocation embeds documents, builds a **FAISS** dense index, and a **Pyserini** (Lucene) sparse index. Subsequent runs reuse them.
|
| 37 |
+
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
## 2. Repository layout
|
| 41 |
+
|
| 42 |
+
```
|
| 43 |
+
evaluation/ β βοΈ Core library
|
| 44 |
+
βββ config.py β’ Typed dataclasses (retriever, generator, stats, reranker)
|
| 45 |
+
βββ pipeline.py β’ Orchestrates retrieval β (optional) re-ranking β generation
|
| 46 |
+
β βββ β¦ logs every stage to dict β downstream eval
|
| 47 |
+
βββ retrievers/ β’ BM25, Dense (Sentence-Transformers + FAISS), Hybrid
|
| 48 |
+
βββ rerankers/ β’ Cross-encoder re-ranker (optional second stage)
|
| 49 |
+
βββ generators/ β’ Hugging Face generator wrapper (T5/Flan/BARTβ¦)
|
| 50 |
+
βββ metrics/ β’ Retrieval, generation, composite RAG score
|
| 51 |
+
βββ stats/ β’ Correlation, significance, robustness utilities
|
| 52 |
+
configs/ β YAML templates (pipeline & stats settings)
|
| 53 |
+
scripts/ β CLI helpers: run_experiments.py, download_data.sh β¦
|
| 54 |
+
tests/ β PyTest smoke tests cover every public module
|
| 55 |
+
.github/workflows/ci.yml β Lint + tests on push / PR
|
| 56 |
+
Dockerfile β Slim runtime ready for reproducibility
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
---
|
| 60 |
+
|
| 61 |
+
## 3. How each module maps to proposal tasks
|
| 62 |
+
|
| 63 |
+
| Proposal section | Code artefact | Purpose |
|
| 64 |
+
| -------------------------------------- | ----------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
|
| 65 |
+
| **Retrievers** (BM25, dense, hybrid) | `evaluation/retrievers/` | Implements **RQ1** experiments on classic vs. dense retrieval. Auto-builds indexes to ease replication. |
|
| 66 |
+
| **Generator** (Fixed seq2seq backbone) | `evaluation/generators/` | Holds the controlled decoding backend so retrieval changes are isolated. |
|
| 67 |
+
| **Cross-encoder re-ranker** | `evaluation/rerankers/` | Optional βadvanced RAGβ from Fig. 2 of proposal; improves evidence precision. |
|
| 68 |
+
| **Metric taxonomy** | `evaluation/metrics/` | Classical IR metrics, semantic generation scores, and composite `rag_score` per WP3. |
|
| 69 |
+
| **Statistical tests & sensitivity** | `evaluation/stats/` + `StatsConfig` | Spearman/ Kendall correlations (**RQ1, RQ2**), Wilcoxon + Holm-Bonferroni (**RQ2**), error-propagation ΟΒ² and robustness deltas (**RQ3, RQ4**). |
|
| 70 |
+
| **Reproducibility** | Dockerfile, CI, pre-commit | Meets EU AI Actβs βtechnical documentation & traceabilityβ clauses (Articles 14-15). |
|
| 71 |
+
|
| 72 |
+
---
|
| 73 |
+
|
| 74 |
+
## 4. Configuration at a glance
|
| 75 |
+
|
| 76 |
+
```yaml
|
| 77 |
+
# configs/pipeline_hybrid_ce.yaml
|
| 78 |
+
retriever:
|
| 79 |
+
name: hybrid # bm25 | dense | hybrid
|
| 80 |
+
bm25_index: indexes/legal_bm25
|
| 81 |
+
faiss_index: indexes/legal_dense.faiss
|
| 82 |
+
doc_store: data/legal_docs.jsonl
|
| 83 |
+
top_k: 10
|
| 84 |
+
alpha: 0.6
|
| 85 |
+
|
| 86 |
+
reranker:
|
| 87 |
+
enable: true # cross-encoder stage
|
| 88 |
+
model_name: cross-encoder/ms-marco-MiniLM-L-6-v2
|
| 89 |
+
first_stage_k: 50
|
| 90 |
+
final_k: 10
|
| 91 |
+
device: cuda:0
|
| 92 |
+
|
| 93 |
+
generator:
|
| 94 |
+
model_name: google/flan-t5-base
|
| 95 |
+
device: cuda:0
|
| 96 |
+
max_new_tokens: 256
|
| 97 |
+
temperature: 0.0
|
| 98 |
+
|
| 99 |
+
stats:
|
| 100 |
+
correlation_method: spearman
|
| 101 |
+
n_boot: 5000
|
| 102 |
+
ci: 0.95
|
| 103 |
+
wilcoxon_alternative: two-sided
|
| 104 |
+
multiple_correction: holm-bonferroni
|
| 105 |
+
alpha: 0.05
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
All fields are documented in `evaluation/config.py`. You can override any flag via CLI (`--retriever.top_k 20`) if you parse with Hydra or OmegaConf.
|
| 109 |
+
|
| 110 |
+
---
|
| 111 |
+
|
| 112 |
+
## 5. Index generation details
|
| 113 |
+
|
| 114 |
+
* **Sparse (BM25 / Lucene)**
|
| 115 |
+
If `bm25_index` dir is absent, the `BM25Retriever` calls *Pyseriniβs* CLI to build it from `doc_store` (JSONL with `{"id", "text"}`).
|
| 116 |
+
* **Dense (FAISS)**
|
| 117 |
+
Likewise, `DenseRetriever` embeds every document using the Sentence-Transformers model in the config, normalises vectors, and builds an IP-metric FAISS index.
|
| 118 |
+
|
| 119 |
+
Both steps cache artefacts, so future runs start instantly.
|
| 120 |
+
|
| 121 |
+
---
|
| 122 |
+
|
| 123 |
+
## 6. Running the statistical evaluation
|
| 124 |
+
|
| 125 |
+
Each experiment run dumps a JSONL (`results.jsonl`) with per-query fields:
|
| 126 |
+
|
| 127 |
+
```jsonc
|
| 128 |
+
{
|
| 129 |
+
"question": "...",
|
| 130 |
+
"answer": "...",
|
| 131 |
+
"contexts": ["..."],
|
| 132 |
+
"metrics": {
|
| 133 |
+
"precision@10": 0.9,
|
| 134 |
+
"rag_score": 0.71,
|
| 135 |
+
...
|
| 136 |
+
},
|
| 137 |
+
"human_correct": true, // optional gold labels
|
| 138 |
+
"human_faithful": 0.8 // optional expert rating 0-1
|
| 139 |
+
}
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
You can feed that into a notebook or CLI script:
|
| 143 |
+
|
| 144 |
+
```python
|
| 145 |
+
from evaluation.stats import (
|
| 146 |
+
corr_ci, wilcoxon_signed_rank, holm_bonferroni,
|
| 147 |
+
delta_metric, conditional_failure_rate
|
| 148 |
+
)
|
| 149 |
+
from evaluation import StatsConfig
|
| 150 |
+
|
| 151 |
+
cfg = StatsConfig(n_boot=5000)
|
| 152 |
+
# example: correlation of MRR vs. human correctness
|
| 153 |
+
mrr = [r["metrics"]["mrr"] for r in rows]
|
| 154 |
+
gold = [1.0 if r["human_correct"] else 0.0 for r in rows]
|
| 155 |
+
rho, (lo, hi), p = corr_ci(mrr, gold, method=cfg.correlation_method, n_boot=cfg.n_boot)
|
| 156 |
+
print(f"Spearman Ο={rho:.2f} 95% CI=({lo:.2f},{hi:.2f}) p={p:.3g}")
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
All statistical primitives are implemented in pure NumPy+SciPy, ensuring compatibility with lightweight Docker images.
|
| 160 |
+
|
| 161 |
+
---
|
| 162 |
+
|
| 163 |
+
### Happy evaluating!
|
| 164 |
+
|
| 165 |
+
Questions or suggestions? Open an issue or discussion on the GitHub repo.
|
| 166 |
+
|
| 167 |
+
```
|
| 168 |
+
```
|
evaluation/__init__.py
CHANGED
|
@@ -13,3 +13,4 @@ The public API reβexports :class:`evaluation.pipeline.RAGPipeline`.
|
|
| 13 |
"""
|
| 14 |
|
| 15 |
from .pipeline import RAGPipeline, PipelineConfig # noqa: F401
|
|
|
|
|
|
| 13 |
"""
|
| 14 |
|
| 15 |
from .pipeline import RAGPipeline, PipelineConfig # noqa: F401
|
| 16 |
+
from .config import LoggingConfig
|
evaluation/config.py
CHANGED
|
@@ -4,6 +4,13 @@ from dataclasses import dataclass
|
|
| 4 |
from pathlib import Path
|
| 5 |
from typing import Optional, Literal
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
@dataclass
|
| 8 |
class CrossEncoderConfig:
|
| 9 |
enable: bool = False # master switch
|
|
@@ -64,6 +71,7 @@ class StatsConfig:
|
|
| 64 |
@dataclass
|
| 65 |
class PipelineConfig:
|
| 66 |
"""Topβlevel pipeline configuration."""
|
|
|
|
| 67 |
reranker: CrossEncoderConfig = CrossEncoderConfig()
|
| 68 |
retriever: RetrieverConfig = RetrieverConfig()
|
| 69 |
generator: GeneratorConfig = GeneratorConfig()
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
from typing import Optional, Literal
|
| 6 |
|
| 7 |
+
@dataclass
|
| 8 |
+
class LoggingConfig:
|
| 9 |
+
log_dir: Path = Path("logs")
|
| 10 |
+
level: str = "INFO" # DEBUG | INFO | WARNING | ERROR | CRITICAL
|
| 11 |
+
max_mb: int = 5 # per-file size before rotation
|
| 12 |
+
backups: int = 5 # number of rotated files to keep
|
| 13 |
+
|
| 14 |
@dataclass
|
| 15 |
class CrossEncoderConfig:
|
| 16 |
enable: bool = False # master switch
|
|
|
|
| 71 |
@dataclass
|
| 72 |
class PipelineConfig:
|
| 73 |
"""Topβlevel pipeline configuration."""
|
| 74 |
+
logging: LoggingConfig = LoggingConfig()
|
| 75 |
reranker: CrossEncoderConfig = CrossEncoderConfig()
|
| 76 |
retriever: RetrieverConfig = RetrieverConfig()
|
| 77 |
generator: GeneratorConfig = GeneratorConfig()
|
evaluation/stats/__init__.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
"""Statistical utilities for analysis scripts."""
|
| 2 |
|
|
|
|
| 3 |
from .correlation import corr_ci
|
| 4 |
from .significance import wilcoxon_signed_rank, holm_bonferroni
|
| 5 |
from .robustness import (
|
|
|
|
| 1 |
"""Statistical utilities for analysis scripts."""
|
| 2 |
|
| 3 |
+
from ..config import StatsConfig
|
| 4 |
from .correlation import corr_ci
|
| 5 |
from .significance import wilcoxon_signed_rank, holm_bonferroni
|
| 6 |
from .robustness import (
|
evaluation/utils/logger.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Centralised logging initialisation (console + rotating file)."""
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
import logging
|
| 5 |
+
import logging.handlers
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import Optional
|
| 11 |
+
|
| 12 |
+
__all__ = ["init_logging"]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def init_logging(
|
| 16 |
+
*,
|
| 17 |
+
log_dir: str | os.PathLike = "logs",
|
| 18 |
+
level: str | int = "INFO",
|
| 19 |
+
fmt: str = "%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
| 20 |
+
max_mb: int = 5,
|
| 21 |
+
backups: int = 5,
|
| 22 |
+
) -> Path:
|
| 23 |
+
"""Configure root logger for both console *and* rotating-file output.
|
| 24 |
+
|
| 25 |
+
Returns
|
| 26 |
+
-------
|
| 27 |
+
Path to the log file.
|
| 28 |
+
"""
|
| 29 |
+
log_dir = Path(log_dir)
|
| 30 |
+
log_dir.mkdir(parents=True, exist_ok=True)
|
| 31 |
+
logfile = log_dir / f"{datetime.now(datetime.timezone.utc):%Y%m%d_%H%M%S}.log"
|
| 32 |
+
|
| 33 |
+
if isinstance(level, str):
|
| 34 |
+
level = logging._nameToLevel.get(level.upper(), logging.INFO)
|
| 35 |
+
formatter = logging.Formatter(fmt)
|
| 36 |
+
|
| 37 |
+
root = logging.getLogger()
|
| 38 |
+
root.setLevel(level)
|
| 39 |
+
root.handlers.clear() # avoid duplicate handlers on re-init
|
| 40 |
+
|
| 41 |
+
# Console
|
| 42 |
+
ch = logging.StreamHandler(sys.stderr)
|
| 43 |
+
ch.setLevel(level)
|
| 44 |
+
ch.setFormatter(formatter)
|
| 45 |
+
root.addHandler(ch)
|
| 46 |
+
|
| 47 |
+
# Rotating file
|
| 48 |
+
fh = logging.handlers.RotatingFileHandler(
|
| 49 |
+
logfile, maxBytes=max_mb * 1024 * 1024, backupCount=backups
|
| 50 |
+
)
|
| 51 |
+
fh.setLevel(level)
|
| 52 |
+
fh.setFormatter(formatter)
|
| 53 |
+
root.addHandler(fh)
|
| 54 |
+
|
| 55 |
+
root.info("Logging initialised. File=%s Level=%s", logfile, logging.getLevelName(level))
|
| 56 |
+
return logfile
|
scripts/dashboard.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
"""
|
| 3 |
+
dashboard.py
|
| 4 |
+
============
|
| 5 |
+
|
| 6 |
+
Launch with:
|
| 7 |
+
streamlit run scripts/dashboard.py
|
| 8 |
+
|
| 9 |
+
Relies on the directory structure produced by run_grid_experiments.py:
|
| 10 |
+
outputs/grid/<dataset>/<config>/{aggregates.yaml, rq1.yaml, ...}
|
| 11 |
+
"""
|
| 12 |
+
from __future__ import annotations
|
| 13 |
+
|
| 14 |
+
import json
|
| 15 |
+
import yaml
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
|
| 18 |
+
import pandas as pd
|
| 19 |
+
import streamlit as st
|
| 20 |
+
import matplotlib.pyplot as plt
|
| 21 |
+
|
| 22 |
+
BASE_DIR = Path("outputs/grid") # change if you store runs elsewhere
|
| 23 |
+
METRIC_KEY = "rag_score" # bar/box plots focus on this
|
| 24 |
+
|
| 25 |
+
# --------------------------------------------------------------------- Sidebar
|
| 26 |
+
st.sidebar.title("RAG-Eval Dashboard")
|
| 27 |
+
|
| 28 |
+
if not BASE_DIR.exists():
|
| 29 |
+
st.sidebar.error(f"Folder {BASE_DIR} not found β run experiments first.")
|
| 30 |
+
st.stop()
|
| 31 |
+
|
| 32 |
+
datasets = sorted([p.name for p in BASE_DIR.iterdir() if p.is_dir()])
|
| 33 |
+
dataset = st.sidebar.selectbox("Dataset", datasets)
|
| 34 |
+
conf_dir = BASE_DIR / dataset
|
| 35 |
+
configs = sorted([p.name for p in conf_dir.iterdir() if p.is_dir()])
|
| 36 |
+
sel_cfgs = st.sidebar.multiselect("Configurations", configs, default=configs)
|
| 37 |
+
|
| 38 |
+
if not sel_cfgs:
|
| 39 |
+
st.warning("Select at least one configuration.")
|
| 40 |
+
st.stop()
|
| 41 |
+
|
| 42 |
+
# ---------------------------------------------------------------- Load helpers
|
| 43 |
+
def _yaml(path: Path): return yaml.safe_load(path.read_text())
|
| 44 |
+
def _jsonl(path: Path): return [json.loads(l) for l in path.read_text().splitlines()]
|
| 45 |
+
|
| 46 |
+
# ---------------------------------------------------------------- Main view
|
| 47 |
+
st.title(f"Dataset: {dataset}")
|
| 48 |
+
|
| 49 |
+
# ββ Aggregated metrics table ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 50 |
+
agg = {c: _yaml(conf_dir / c / "aggregates.yaml") for c in sel_cfgs}
|
| 51 |
+
agg_df = pd.DataFrame(agg).T
|
| 52 |
+
st.subheader("Aggregated metrics")
|
| 53 |
+
st.dataframe(agg_df, use_container_width=True)
|
| 54 |
+
|
| 55 |
+
# ββ Bar chart of rag_score means ββββββββββββββββββββββββββββββββββββββββββββ
|
| 56 |
+
st.subheader(f"Mean {METRIC_KEY}")
|
| 57 |
+
fig, ax = plt.subplots()
|
| 58 |
+
agg_df[METRIC_KEY].plot.bar(ax=ax)
|
| 59 |
+
ax.set_ylabel(METRIC_KEY)
|
| 60 |
+
ax.set_ylim(0, 1)
|
| 61 |
+
st.pyplot(fig)
|
| 62 |
+
|
| 63 |
+
# ββ Scatter MRR vs Correctness per config βββββββββββββββββββββββββββββββββββ
|
| 64 |
+
st.subheader("MRR vs Human Correctness")
|
| 65 |
+
cols = st.columns(len(sel_cfgs))
|
| 66 |
+
for col, cfg in zip(cols, sel_cfgs):
|
| 67 |
+
rows = _jsonl(conf_dir / cfg / "results.jsonl")
|
| 68 |
+
x = [r["metrics"].get("mrr", float("nan")) for r in rows]
|
| 69 |
+
y = [1 if r.get("human_correct") else 0 for r in rows]
|
| 70 |
+
fig, ax = plt.subplots()
|
| 71 |
+
ax.scatter(x, y, alpha=0.5)
|
| 72 |
+
ax.set(title=cfg, xlabel="MRR", ylabel="Correct?")
|
| 73 |
+
col.pyplot(fig)
|
| 74 |
+
|
| 75 |
+
# ββ Pairwise Wilcoxon-Holm table (rag_score) ββββββββββββββββββββββββββββββββ
|
| 76 |
+
wh_path = conf_dir / "wilcoxon_rag_holm.yaml"
|
| 77 |
+
if wh_path.exists():
|
| 78 |
+
st.subheader("Pairwise Wilcoxon-Holm (rag_score)")
|
| 79 |
+
wh_df = pd.Series(_yaml(wh_path), name="p_adj").to_frame()
|
| 80 |
+
st.dataframe(wh_df)
|
| 81 |
+
else:
|
| 82 |
+
st.info("Wilcoxon table not found β run_grid_experiments.py computes it.")
|
| 83 |
+
|
| 84 |
+
# ββ Research-question YAMLs βββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 85 |
+
rq_tabs = st.tabs([f"{cfg}" for cfg in sel_cfgs])
|
| 86 |
+
for tab, cfg in zip(rq_tabs, sel_cfgs):
|
| 87 |
+
with tab:
|
| 88 |
+
for rq in ("rq1", "rq2", "rq3", "rq4"):
|
| 89 |
+
path = conf_dir / cfg / f"{rq}.yaml"
|
| 90 |
+
if path.exists():
|
| 91 |
+
st.markdown(f"**{rq.upper()}**")
|
| 92 |
+
st.json(_yaml(path))
|
| 93 |
+
else:
|
| 94 |
+
st.markdown(f"*{rq.upper()} β not available*")
|
| 95 |
+
|
| 96 |
+
# ββ Raw results download ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 97 |
+
st.sidebar.subheader("Download")
|
| 98 |
+
for cfg in sel_cfgs:
|
| 99 |
+
st.sidebar.download_button(
|
| 100 |
+
label=f"{cfg} results.jsonl",
|
| 101 |
+
data=(conf_dir / cfg / "results.jsonl").read_bytes(),
|
| 102 |
+
file_name=f"{dataset}_{cfg}_results.jsonl",
|
| 103 |
+
mime="application/jsonl",
|
| 104 |
+
)
|
scripts/run_experiments.py
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
"""
|
| 3 |
+
run_experiments.py
|
| 4 |
+
==================
|
| 5 |
+
|
| 6 |
+
High-level driver that wires together:
|
| 7 |
+
|
| 8 |
+
1. YAML / CLI β `PipelineConfig` + `LoggingConfig`
|
| 9 |
+
2. Initialises dual-sink logging (console + rotating file)
|
| 10 |
+
3. Builds a `RAGPipeline`
|
| 11 |
+
4. Streams a list of questions through the pipeline
|
| 12 |
+
5. Logs progress, writes per-query JSONL results, and
|
| 13 |
+
(optionally) prints aggregate statistics.
|
| 14 |
+
|
| 15 |
+
You can keep it minimal β or expand the marked TODO sections to:
|
| 16 |
+
* compute metrics immediately
|
| 17 |
+
* push results to a tracker (W&B, MLflow, etc.)
|
| 18 |
+
* spawn multiple configs in parallel.
|
| 19 |
+
"""
|
| 20 |
+
from __future__ import annotations
|
| 21 |
+
|
| 22 |
+
import argparse
|
| 23 |
+
import json
|
| 24 |
+
import sys
|
| 25 |
+
from pathlib import Path
|
| 26 |
+
from typing import Any, Dict, Iterable, List, Mapping
|
| 27 |
+
|
| 28 |
+
import yaml
|
| 29 |
+
|
| 30 |
+
from evaluation import (
|
| 31 |
+
PipelineConfig,
|
| 32 |
+
RetrieverConfig,
|
| 33 |
+
GeneratorConfig,
|
| 34 |
+
CrossEncoderConfig,
|
| 35 |
+
StatsConfig,
|
| 36 |
+
LoggingConfig,
|
| 37 |
+
RAGPipeline,
|
| 38 |
+
)
|
| 39 |
+
from evaluation.utils.logger import init_logging
|
| 40 |
+
|
| 41 |
+
from evaluation.stats import (
|
| 42 |
+
corr_ci,
|
| 43 |
+
wilcoxon_signed_rank,
|
| 44 |
+
holm_bonferroni,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
import matplotlib.pyplot as plt
|
| 48 |
+
|
| 49 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 50 |
+
# Helpers
|
| 51 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def _merge_dataclass(dc_cls, default, override: Mapping[str, Any]):
|
| 55 |
+
"""Return a new *dc_cls* where fields from *override* overwrite *default*."""
|
| 56 |
+
from dataclasses import asdict
|
| 57 |
+
|
| 58 |
+
merged = asdict(default)
|
| 59 |
+
merged.update({k: v for k, v in override.items() if v is not None})
|
| 60 |
+
return dc_cls(**merged)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def _load_pipeline_config(yaml_path: Path | None) -> PipelineConfig:
|
| 64 |
+
"""Parse YAML into nested dataclasses; fall back to defaults."""
|
| 65 |
+
if yaml_path is None:
|
| 66 |
+
return PipelineConfig() # all defaults
|
| 67 |
+
|
| 68 |
+
data = yaml.safe_load(yaml_path.read_text())
|
| 69 |
+
|
| 70 |
+
retr_cfg = _merge_dataclass(
|
| 71 |
+
RetrieverConfig(), RetrieverConfig(), data.get("retriever", {})
|
| 72 |
+
)
|
| 73 |
+
gen_cfg = _merge_dataclass(
|
| 74 |
+
GeneratorConfig(), GeneratorConfig(), data.get("generator", {})
|
| 75 |
+
)
|
| 76 |
+
rr_cfg = _merge_dataclass(
|
| 77 |
+
CrossEncoderConfig(), CrossEncoderConfig(), data.get("reranker", {})
|
| 78 |
+
)
|
| 79 |
+
stats_cfg = _merge_dataclass(StatsConfig(), StatsConfig(), data.get("stats", {}))
|
| 80 |
+
log_cfg = _merge_dataclass(LoggingConfig(), LoggingConfig(), data.get("logging", {}))
|
| 81 |
+
|
| 82 |
+
return PipelineConfig(
|
| 83 |
+
retriever=retr_cfg,
|
| 84 |
+
generator=gen_cfg,
|
| 85 |
+
reranker=rr_cfg,
|
| 86 |
+
stats=stats_cfg,
|
| 87 |
+
logging=log_cfg,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def _read_jsonl(path: Path) -> List[Dict[str, Any]]:
|
| 92 |
+
with path.open() as f:
|
| 93 |
+
return [json.loads(line) for line in f]
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def _write_jsonl(path: Path, rows: Iterable[Mapping[str, Any]]):
|
| 97 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
| 98 |
+
with path.open("w") as f:
|
| 99 |
+
for row in rows:
|
| 100 |
+
f.write(json.dumps(row) + "\n")
|
| 101 |
+
|
| 102 |
+
# Stats Helper
|
| 103 |
+
def aggregate_metrics(rows: list[dict[str, Any]]) -> dict[str, float]:
|
| 104 |
+
"""Return mean of every numeric metric found under row['metrics']."""
|
| 105 |
+
import numpy as np
|
| 106 |
+
keys = rows[0]["metrics"].keys()
|
| 107 |
+
return {k: float(np.mean([r["metrics"][k] for r in rows])) for k in keys}
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def correlation_with_gold(rows: list[dict[str, Any]], cfg: StatsConfig):
|
| 111 |
+
"""Spearman/Kendall correlation between retrieval scores and correctness flag."""
|
| 112 |
+
if "human_correct" not in rows[0]:
|
| 113 |
+
return None # nothing to correlate
|
| 114 |
+
mrr = [r["metrics"].get("mrr", float("nan")) for r in rows]
|
| 115 |
+
gold = [1.0 if r["human_correct"] else 0.0 for r in rows]
|
| 116 |
+
r, (lo, hi), p = corr_ci(
|
| 117 |
+
mrr, gold, method=cfg.correlation_method, n_boot=cfg.n_boot, ci=cfg.ci
|
| 118 |
+
)
|
| 119 |
+
return dict(r=r, ci_low=lo, ci_high=hi, p=p)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def wilcoxon_against_baseline(
|
| 123 |
+
cur: list[dict[str, Any]],
|
| 124 |
+
base: list[dict[str, Any]],
|
| 125 |
+
cfg: StatsConfig,
|
| 126 |
+
):
|
| 127 |
+
"""Paired Wilcoxon + Holm-Bonferroni across all metric keys."""
|
| 128 |
+
from evaluation.stats import wilcoxon_signed_rank, holm_bonferroni
|
| 129 |
+
|
| 130 |
+
assert len(cur) == len(base), "Runs must have same #queries"
|
| 131 |
+
metrics = cur[0]["metrics"].keys()
|
| 132 |
+
p_raw = {}
|
| 133 |
+
for m in metrics:
|
| 134 |
+
cur_m = [r["metrics"][m] for r in cur]
|
| 135 |
+
base_m = [r["metrics"][m] for r in base]
|
| 136 |
+
_, p = wilcoxon_signed_rank(cur_m, base_m, alternative=cfg.wilcoxon_alternative)
|
| 137 |
+
p_raw[m] = p
|
| 138 |
+
return holm_bonferroni(p_raw)
|
| 139 |
+
|
| 140 |
+
# Plot helper
|
| 141 |
+
def save_scatter(rows, out_dir: Path):
|
| 142 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 143 |
+
x = [r["metrics"]["mrr"] for r in rows if "mrr" in r["metrics"]]
|
| 144 |
+
y = [1.0 if r.get("human_correct") else 0.0 for r in rows]
|
| 145 |
+
plt.figure()
|
| 146 |
+
plt.scatter(x, y, alpha=0.6)
|
| 147 |
+
plt.xlabel("MRR")
|
| 148 |
+
plt.ylabel("Correct (1=yes)")
|
| 149 |
+
plt.title("MRR vs. Human Correctness")
|
| 150 |
+
path = out_dir / "mrr_vs_correct.png"
|
| 151 |
+
plt.savefig(path, bbox_inches="tight")
|
| 152 |
+
plt.close()
|
| 153 |
+
return path
|
| 154 |
+
|
| 155 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 156 |
+
# Main
|
| 157 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 158 |
+
def main(argv: list[str] | None = None) -> None:
|
| 159 |
+
ap = argparse.ArgumentParser(description="Run RAG evaluation experiments.")
|
| 160 |
+
ap.add_argument("--config", type=Path, help="YAML config with pipeline settings")
|
| 161 |
+
ap.add_argument(
|
| 162 |
+
"--queries",
|
| 163 |
+
type=Path,
|
| 164 |
+
required=True,
|
| 165 |
+
help="JSONL file β each line must contain at least {'question': ...}",
|
| 166 |
+
)
|
| 167 |
+
ap.add_argument(
|
| 168 |
+
"--output",
|
| 169 |
+
type=Path,
|
| 170 |
+
default=Path("outputs/results.jsonl"),
|
| 171 |
+
help="Where to write JSONL results",
|
| 172 |
+
)
|
| 173 |
+
ap.add_argument("--dry-run", action="store_true", help="Do not execute pipeline")
|
| 174 |
+
ap.add_argument(
|
| 175 |
+
"--baseline",
|
| 176 |
+
type=Path,
|
| 177 |
+
help="Optional: JSONL with baseline run for significance tests",
|
| 178 |
+
)
|
| 179 |
+
ap.add_argument(
|
| 180 |
+
"--plots",
|
| 181 |
+
action="store_true",
|
| 182 |
+
help="Save diagnostic plots (PNG) alongside results",
|
| 183 |
+
)
|
| 184 |
+
args = ap.parse_args(argv)
|
| 185 |
+
|
| 186 |
+
# 1. Parse configuration
|
| 187 |
+
cfg = _load_pipeline_config(args.config)
|
| 188 |
+
|
| 189 |
+
# 2. Initialise logging (file + stderr)
|
| 190 |
+
init_logging(
|
| 191 |
+
log_dir=cfg.logging.log_dir,
|
| 192 |
+
level=cfg.logging.level,
|
| 193 |
+
max_mb=cfg.logging.max_mb,
|
| 194 |
+
backups=cfg.logging.backups,
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
import logging
|
| 198 |
+
|
| 199 |
+
logger = logging.getLogger(__name__)
|
| 200 |
+
logger.info("Loaded PipelineConfig:\n%s", cfg)
|
| 201 |
+
|
| 202 |
+
# 3. Build pipeline (retrieval β (rerank) β generation)
|
| 203 |
+
pipeline = RAGPipeline(cfg)
|
| 204 |
+
|
| 205 |
+
# 4. Load queries
|
| 206 |
+
rows = _read_jsonl(args.queries)
|
| 207 |
+
logger.info("Loaded %d queries from %s", len(rows), args.queries)
|
| 208 |
+
|
| 209 |
+
if args.dry_run:
|
| 210 |
+
logger.warning("Dry-run flag active β exiting before execution.")
|
| 211 |
+
sys.exit(0)
|
| 212 |
+
|
| 213 |
+
# 5. Execute pipeline
|
| 214 |
+
results: List[Dict[str, Any]] = []
|
| 215 |
+
for i, row in enumerate(rows, 1):
|
| 216 |
+
q = row["question"]
|
| 217 |
+
logger.info("[%d/%d] Q: %s", i, len(rows), q)
|
| 218 |
+
out = pipeline.run(q)
|
| 219 |
+
merged = {**row, **out} # keep any gold labels or metadata
|
| 220 |
+
results.append(merged)
|
| 221 |
+
|
| 222 |
+
# 6. Persist results
|
| 223 |
+
_write_jsonl(args.output, results)
|
| 224 |
+
logger.info("Wrote %d results to %s", len(results), args.output)
|
| 225 |
+
|
| 226 |
+
# 7. Aggregate statistics, significance tests, plots
|
| 227 |
+
agg = aggregate_metrics(results)
|
| 228 |
+
logger.info("Mean metrics: %s", json.dumps(agg, indent=2))
|
| 229 |
+
|
| 230 |
+
corr = correlation_with_gold(results, cfg.stats)
|
| 231 |
+
if corr:
|
| 232 |
+
logger.info(
|
| 233 |
+
"Correlation MRRβgold %s=%.3f 95%%CI=[%.3f, %.3f] p=%.3g",
|
| 234 |
+
cfg.stats.correlation_method,
|
| 235 |
+
corr["r"],
|
| 236 |
+
corr["ci_low"],
|
| 237 |
+
corr["ci_high"],
|
| 238 |
+
corr["p"],
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
if args.baseline:
|
| 242 |
+
baseline_rows = _read_jsonl(args.baseline)
|
| 243 |
+
p_adj = wilcoxon_against_baseline(results, baseline_rows, cfg.stats)
|
| 244 |
+
logger.info("Wilcoxon vs baseline (Holm-Bonferroni Ξ±=%s): %s", cfg.stats.alpha, p_adj)
|
| 245 |
+
|
| 246 |
+
if args.plots:
|
| 247 |
+
plot_path = save_scatter(results, args.output.parent)
|
| 248 |
+
logger.info("Saved plot β %s", plot_path)
|
| 249 |
+
|
| 250 |
+
if __name__ == "__main__":
|
| 251 |
+
main()
|
scripts/run_grid_experiments.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
"""
|
| 3 |
+
run_grid_experiments.py
|
| 4 |
+
=======================
|
| 5 |
+
Batch driver for *config Γ dataset* evaluation, including:
|
| 6 |
+
|
| 7 |
+
* RQ1 β Correlation of classical retrieval metrics with factual-correctness
|
| 8 |
+
* RQ2 β Correlation of faithfulness metrics with expert judgements
|
| 9 |
+
* RQ3 β Retrieval-error β hallucination propagation (ΟΒ² + conditional rates)
|
| 10 |
+
* RQ4 β Robustness under adversarial perturbations (Ξ-metrics, Cohen d)
|
| 11 |
+
|
| 12 |
+
Features
|
| 13 |
+
--------
|
| 14 |
+
* Incremental mode β pass **one** new --config, it is compared to all
|
| 15 |
+
previous runs already found under --outdir/<dataset>/.
|
| 16 |
+
* Saves:
|
| 17 |
+
- `results.jsonl`
|
| 18 |
+
- `aggregates.yaml`
|
| 19 |
+
- `rq1.yaml`, `rq2.yaml`, `rq3.yaml`, `rq4.yaml`
|
| 20 |
+
- pairwise Wilcoxon/ Holm tables
|
| 21 |
+
- bar-, box-, scatter-plots (if --plots flag)
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
from __future__ import annotations
|
| 25 |
+
|
| 26 |
+
import argparse
|
| 27 |
+
import itertools
|
| 28 |
+
import json
|
| 29 |
+
import logging
|
| 30 |
+
import os
|
| 31 |
+
from pathlib import Path
|
| 32 |
+
from typing import Any, Dict, Iterable, List, Mapping
|
| 33 |
+
|
| 34 |
+
import matplotlib.pyplot as plt
|
| 35 |
+
import numpy as np
|
| 36 |
+
import yaml
|
| 37 |
+
|
| 38 |
+
from evaluation import (
|
| 39 |
+
PipelineConfig,
|
| 40 |
+
RetrieverConfig,
|
| 41 |
+
GeneratorConfig,
|
| 42 |
+
CrossEncoderConfig,
|
| 43 |
+
StatsConfig,
|
| 44 |
+
LoggingConfig,
|
| 45 |
+
RAGPipeline,
|
| 46 |
+
)
|
| 47 |
+
from evaluation.stats import (
|
| 48 |
+
corr_ci,
|
| 49 |
+
wilcoxon_signed_rank,
|
| 50 |
+
holm_bonferroni,
|
| 51 |
+
conditional_failure_rate,
|
| 52 |
+
chi2_error_propagation,
|
| 53 |
+
delta_metric,
|
| 54 |
+
)
|
| 55 |
+
from evaluation.utils.logger import init_logging
|
| 56 |
+
|
| 57 |
+
# βββββββββββββββββββββββββββββββ I/O helpers ββββββββββββββββββββββββββββββββ
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def read_jsonl(path: Path) -> List[Dict[str, Any]]:
|
| 61 |
+
with path.open() as f:
|
| 62 |
+
return [json.loads(line) for line in f]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def write_jsonl(path: Path, rows: Iterable[Mapping[str, Any]]) -> None:
|
| 66 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
| 67 |
+
with path.open("w") as f:
|
| 68 |
+
for row in rows:
|
| 69 |
+
f.write(json.dumps(row) + "\n")
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def save_yaml(path: Path, obj: Mapping[str, Any]) -> None:
|
| 73 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
| 74 |
+
path.write_text(yaml.safe_dump(obj, sort_keys=False))
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# βββββββββββββββββββββββ config merge (same as earlier) βββββββββββββββββββββ
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def merge_dataclass(dc_cls, override: Mapping[str, Any]):
|
| 81 |
+
from dataclasses import asdict
|
| 82 |
+
|
| 83 |
+
base = asdict(dc_cls())
|
| 84 |
+
base.update({k: v for k, v in override.items() if v is not None})
|
| 85 |
+
return dc_cls(**base)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def load_pipeline_config(yaml_path: Path) -> PipelineConfig:
|
| 89 |
+
data = yaml.safe_load(yaml_path.read_text())
|
| 90 |
+
return PipelineConfig(
|
| 91 |
+
retriever=merge_dataclass(RetrieverConfig, data.get("retriever", {})),
|
| 92 |
+
generator=merge_dataclass(GeneratorConfig, data.get("generator", {})),
|
| 93 |
+
reranker=merge_dataclass(CrossEncoderConfig, data.get("reranker", {})),
|
| 94 |
+
stats=merge_dataclass(StatsConfig, data.get("stats", {})),
|
| 95 |
+
logging=merge_dataclass(LoggingConfig, data.get("logging", {})),
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# βββββββββββββββββββββββββββββ stats helpers ββββββββββββββββββββββββββββββββ
|
| 100 |
+
def agg_mean(rows: List[dict[str, Any]]) -> dict[str, float]:
|
| 101 |
+
keys = rows[0]["metrics"].keys()
|
| 102 |
+
return {k: float(np.mean([r["metrics"][k] for r in rows])) for k in keys}
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def rq1_correlation(rows, cfg: StatsConfig):
|
| 106 |
+
if "human_correct" not in rows[0]:
|
| 107 |
+
return {}
|
| 108 |
+
retrieval_keys = [k for k in rows[0]["metrics"] if k in {"mrr", "map", "precision@10"}]
|
| 109 |
+
gold = [1.0 if r["human_correct"] else 0.0 for r in rows]
|
| 110 |
+
out = {}
|
| 111 |
+
for k in retrieval_keys:
|
| 112 |
+
vec = [r["metrics"][k] for r in rows]
|
| 113 |
+
r, (lo, hi), p = corr_ci(vec, gold, method=cfg.correlation_method,
|
| 114 |
+
n_boot=cfg.n_boot, ci=cfg.ci)
|
| 115 |
+
out[k] = dict(r=r, ci=[lo, hi], p=p)
|
| 116 |
+
return out
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def rq2_faithfulness(rows, cfg: StatsConfig):
|
| 120 |
+
if "human_faithful" not in rows[0]:
|
| 121 |
+
return {}
|
| 122 |
+
faith_keys = [k for k in rows[0]["metrics"] if k.lower().startswith(("faith", "qags", "fact", "ragas"))]
|
| 123 |
+
gold = [r["human_faithful"] for r in rows]
|
| 124 |
+
out = {}
|
| 125 |
+
for k in faith_keys:
|
| 126 |
+
vec = [r["metrics"][k] for r in rows]
|
| 127 |
+
r, (lo, hi), p = corr_ci(vec, gold, method=cfg.correlation_method,
|
| 128 |
+
n_boot=cfg.n_boot, ci=cfg.ci)
|
| 129 |
+
out[k] = dict(r=r, ci=[lo, hi], p=p)
|
| 130 |
+
return out
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def rq3_error_propagation(rows):
|
| 134 |
+
if "retrieval_error" not in rows[0] or "hallucination" not in rows[0]:
|
| 135 |
+
return {}
|
| 136 |
+
ret_err = [r["retrieval_error"] for r in rows]
|
| 137 |
+
halluc = [r["hallucination"] for r in rows]
|
| 138 |
+
cond = conditional_failure_rate(ret_err, halluc)
|
| 139 |
+
chi2 = chi2_error_propagation(ret_err, halluc)
|
| 140 |
+
return {"conditional": cond, "chi2": chi2}
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def rq4_robustness(orig_rows, pert_rows):
|
| 144 |
+
if pert_rows is None:
|
| 145 |
+
return {}
|
| 146 |
+
metrics = orig_rows[0]["metrics"].keys()
|
| 147 |
+
out = {}
|
| 148 |
+
for m in metrics:
|
| 149 |
+
d, eff = delta_metric(
|
| 150 |
+
[r["metrics"][m] for r in orig_rows],
|
| 151 |
+
[r["metrics"][m] for r in pert_rows],
|
| 152 |
+
)
|
| 153 |
+
out[m] = dict(delta=d, cohen_d=eff)
|
| 154 |
+
return out
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# βββββββββββββββββββββββββββ plotting helpers βββββββββββββββββββββββββββββββ
|
| 158 |
+
def scatter_mrr_vs_correct(rows, path: Path):
|
| 159 |
+
x = [r["metrics"].get("mrr", np.nan) for r in rows]
|
| 160 |
+
y = [1 if r.get("human_correct") else 0 for r in rows]
|
| 161 |
+
plt.figure()
|
| 162 |
+
plt.scatter(x, y, alpha=0.5)
|
| 163 |
+
plt.xlabel("MRR"); plt.ylabel("Correct (1)")
|
| 164 |
+
plt.title("MRR vs. Human Correctness")
|
| 165 |
+
plt.tight_layout(); plt.savefig(path); plt.close()
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
# ββββββββββββββββββββββββββββββββββ main ββββββββββββββββββββββββββββββββββββ
|
| 169 |
+
def main(argv: list[str] | None = None) -> None:
|
| 170 |
+
ap = argparse.ArgumentParser()
|
| 171 |
+
ap.add_argument("--configs", nargs="+", type=Path, required=True,
|
| 172 |
+
help="One or more YAML configs; if one, compared against prior runs.")
|
| 173 |
+
ap.add_argument("--datasets", nargs="+", type=Path, required=True)
|
| 174 |
+
ap.add_argument("--outdir", type=Path, default=Path("outputs/grid"))
|
| 175 |
+
ap.add_argument("--plots", action="store_true")
|
| 176 |
+
ap.add_argument("--perturbed-suffix", default="_pert",
|
| 177 |
+
help="If dataset perturbed version exists (name+suffix.jsonl) it's used for RQ4.")
|
| 178 |
+
args = ap.parse_args(argv)
|
| 179 |
+
|
| 180 |
+
init_logging(log_dir=args.outdir / "logs", level="INFO")
|
| 181 |
+
log = logging.getLogger("grid")
|
| 182 |
+
|
| 183 |
+
for dataset in args.datasets:
|
| 184 |
+
log.info("Dataset: %s", dataset.name)
|
| 185 |
+
queries = read_jsonl(dataset)
|
| 186 |
+
pert_path = dataset.with_stem(dataset.stem + args.perturbed_suffix)
|
| 187 |
+
pert_rows = read_jsonl(pert_path) if pert_path.exists() else None
|
| 188 |
+
|
| 189 |
+
# discover historical configs to compare against if incremental mode
|
| 190 |
+
hist_dirs = (args.outdir / dataset.stem).glob("*") if len(args.configs) == 1 else []
|
| 191 |
+
historical = {d.name: read_jsonl(d / "results.jsonl") for d in hist_dirs if d.is_dir()}
|
| 192 |
+
|
| 193 |
+
for cfg_yaml in args.configs:
|
| 194 |
+
cfg_name = cfg_yaml.stem
|
| 195 |
+
log.info(" Config: %s", cfg_name)
|
| 196 |
+
cfg = load_pipeline_config(cfg_yaml)
|
| 197 |
+
pipe = RAGPipeline(cfg)
|
| 198 |
+
|
| 199 |
+
# skip if results already exist
|
| 200 |
+
run_dir = args.outdir / dataset.stem / cfg_name
|
| 201 |
+
if (run_dir / "results.jsonl").exists():
|
| 202 |
+
log.info(" results already present β loading.")
|
| 203 |
+
rows = read_jsonl(run_dir / "results.jsonl")
|
| 204 |
+
else:
|
| 205 |
+
rows = [pipe.run(q["question"]) | q for q in queries]
|
| 206 |
+
write_jsonl(run_dir / "results.jsonl", rows)
|
| 207 |
+
|
| 208 |
+
# aggregates & RQ1β4
|
| 209 |
+
save_yaml(run_dir / "aggregates.yaml", agg_mean(rows))
|
| 210 |
+
save_yaml(run_dir / "rq1.yaml", rq1_correlation(rows, cfg.stats))
|
| 211 |
+
save_yaml(run_dir / "rq2.yaml", rq2_faithfulness(rows, cfg.stats))
|
| 212 |
+
save_yaml(run_dir / "rq3.yaml", rq3_error_propagation(rows))
|
| 213 |
+
|
| 214 |
+
if pert_rows:
|
| 215 |
+
save_yaml(run_dir / "rq4.yaml", rq4_robustness(rows, pert_rows))
|
| 216 |
+
|
| 217 |
+
if args.plots:
|
| 218 |
+
scatter_mrr_vs_correct(rows, run_dir / "mrr_vs_correct.png")
|
| 219 |
+
|
| 220 |
+
historical[cfg_name] = rows # include current for pairwise tests
|
| 221 |
+
|
| 222 |
+
# pairwise Wilcoxon on rag_score
|
| 223 |
+
if len(historical) > 1:
|
| 224 |
+
pairs = {}
|
| 225 |
+
names = list(historical)
|
| 226 |
+
for a, b in itertools.combinations(names, 2):
|
| 227 |
+
x = [r["metrics"]["rag_score"] for r in historical[a]]
|
| 228 |
+
y = [r["metrics"]["rag_score"] for r in historical[b]]
|
| 229 |
+
_, p = wilcoxon_signed_rank(x, y)
|
| 230 |
+
pairs[f"{a}~{b}"] = p
|
| 231 |
+
save_yaml(args.outdir / dataset.stem / "wilcoxon_rag_raw.yaml", pairs)
|
| 232 |
+
save_yaml(args.outdir / dataset.stem / "wilcoxon_rag_holm.yaml",
|
| 233 |
+
holm_bonferroni(pairs))
|
| 234 |
+
|
| 235 |
+
log.info(" Pairwise rag_score significance stored (Holm adjusted).")
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
if __name__ == "__main__":
|
| 239 |
+
main()
|