File size: 2,207 Bytes
fc20fed
 
 
cdf4160
 
 
 
 
 
fc20fed
 
 
 
 
 
cdf4160
 
 
 
fc20fed
 
cdf4160
fc20fed
 
 
 
 
 
cdf4160
 
 
fc20fed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import pytest
import numpy as np

from evaluation.metrics import (
    precision_at_k,
    recall_at_k,
    mean_reciprocal_rank,
    average_precision,
    rag_score,
    bleu,
    rouge_l,
    bert_score,
    qags,
    fact_score,
    ragas_f,
)


def test_retrieval_metrics_simple():
    retrieved = ["d1", "d2", "d3", "d4"]
    relevant = {"d2", "d4", "d5"}

    assert precision_at_k(retrieved, relevant, 2) == pytest.approx(0.5, rel=1e-6)
    assert precision_at_k(retrieved, relevant, 3) == pytest.approx(1 / 3, rel=1e-6)
    assert recall_at_k(retrieved, relevant, 2) == pytest.approx(1 / 3, rel=1e-6)
    assert recall_at_k(retrieved, relevant, 4) == pytest.approx(2 / 3, rel=1e-6)
    assert mean_reciprocal_rank(retrieved, relevant) == pytest.approx(0.5, rel=1e-6)
    assert average_precision(retrieved, relevant) == pytest.approx(1 / 3, rel=1e-6)


def test_rag_score_harmonic_mean():
    scores = {"retrieval_f1": 0.8, "generation_bleu": 0.6}
    val = rag_score(scores)
    target = 2.0 / (1 / 0.8 + 1 / 0.6)
    assert val == pytest.approx(target, rel=1e-6)

    scores_zero = {"retrieval_f1": 0.0, "generation_bleu": 0.6}
    assert rag_score(scores_zero) == pytest.approx(0.0, rel=1e-6)


@pytest.mark.parametrize(
    "preds, refs, expected_min",
    [
        (["Hello world"], ["Hello world"], 0.0),
        (["Some text"], ["Different text"], 0.0),
    ],
)
def test_generation_metrics_fallback(preds, refs, expected_min):
    b = bleu(preds, refs)
    r = rouge_l(preds, refs)
    bs = bert_score(preds, refs)
    assert isinstance(b, float) and b == pytest.approx(expected_min, rel=1e-6)
    assert isinstance(r, float) and r == pytest.approx(expected_min, rel=1e-6)
    assert isinstance(bs, float) and bs == pytest.approx(expected_min, rel=1e-6)


@pytest.mark.parametrize(
    "preds, refs, ctxs, expected",
    [
        (["A"], ["A"], ["ctx"], 0.0),
        (["B"], ["C"], [""], 0.0),
    ],
)
def test_qags_factscore_ragas_f_fallback(preds, refs, ctxs, expected):
    assert qags(preds, refs) == pytest.approx(expected, rel=1e-6)
    assert fact_score(preds, refs) == pytest.approx(expected, rel=1e-6)
    assert ragas_f(preds, refs, ctxs) == pytest.approx(expected, rel=1e-6)