File size: 2,345 Bytes
8521f60
 
79bdbbe
8521f60
79bdbbe
8521f60
 
 
 
 
 
 
79bdbbe
8521f60
79bdbbe
 
 
3b8840f
79bdbbe
 
 
 
 
 
 
 
4dc151e
79bdbbe
 
f868144
3b8840f
f868144
 
 
79bdbbe
 
 
8521f60
79bdbbe
8521f60
 
 
79bdbbe
 
 
8521f60
79bdbbe
 
 
 
 
 
8521f60
 
79bdbbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8521f60
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from __future__ import annotations
import logging
from typing import List, Optional

from .base import Context, Retriever
from .bm25 import BM25Retriever
from .dense import DenseRetriever

logger = logging.getLogger(__name__)


class HybridRetriever(Retriever):
    """Combine BM25 and Dense retrievers by normalising and summing scores."""

    def __init__(
        self,
        bm25_idx: str,
        faiss_index: str,
        doc_store: str,
        *,
        alpha: float = 0.5,
        model_name: str = "sentence-transformers/all-MiniLM-L6-v2",
        embedder_cache: Optional[str] = None,
        device: str = "cpu",
    ):
        # 1) BM25 retriever
        self.bm25 = BM25Retriever(bm25_idx, doc_store=doc_store)

        # 2) Dense retriever
        self.dense = DenseRetriever(
            faiss_index=faiss_index,
            doc_store=doc_store,
            model_name=model_name,
            embedder_cache=embedder_cache,
            device=device,
        )

        if not 0 <= alpha <= 1:
            raise ValueError("alpha must be in [0, 1]")
        self.alpha = alpha

    def retrieve(self, query: str, *, top_k: int = 5) -> List[Context]:
        # 1) Get sparse hits
        sparse_hits = self.bm25.retrieve(query, top_k=top_k)
        sparse_dict = {ctx.id: ctx for ctx in sparse_hits}

        # 2) Get dense hits
        dense_hits = self.dense.retrieve(query, top_k=top_k)
        dense_dict = {ctx.id: ctx for ctx in dense_hits}

        # 3) Union of all IDs
        all_ids = set(sparse_dict) | set(dense_dict)
        merged: List[Context] = []

        for doc_id in all_ids:
            s_score = sparse_dict.get(doc_id, Context(doc_id, "", 0.0)).score
            d_score = dense_dict.get(doc_id, Context(doc_id, "", 0.0)).score

            combined_score = self.alpha * s_score + (1 - self.alpha) * d_score

            # Prefer the text from whichever retriever has this doc_id present;
            # if only one side has it, grab that text.
            if doc_id in sparse_dict:
                text = sparse_dict[doc_id].text
            else:
                text = dense_dict[doc_id].text

            merged.append(Context(id=doc_id, text=text, score=combined_score))

        # 4) Sort by score descending
        merged.sort(key=lambda c: c.score, reverse=True)
        return merged[:top_k]