Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import mne
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import torch
|
|
|
|
| 6 |
|
| 7 |
# Load an open-source LLM model with no additional training
|
| 8 |
model_name = "tiiuae/falcon-7b-instruct"
|
|
@@ -18,13 +20,51 @@ def compute_band_power(psd, freqs, fmin, fmax):
|
|
| 18 |
"""Compute mean band power in the given frequency range."""
|
| 19 |
freq_mask = (freqs >= fmin) & (freqs <= fmax)
|
| 20 |
# Take the mean across channels and frequencies
|
| 21 |
-
band_psd = psd[:, freq_mask].mean()
|
| 22 |
return float(band_psd)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def process_eeg(file):
|
| 25 |
-
# Load EEG data
|
| 26 |
-
|
| 27 |
-
raw = mne.io.read_raw_fif(file.name, preload=True)
|
| 28 |
|
| 29 |
# Compute PSD (Power Spectral Density) between 1 and 40 Hz
|
| 30 |
psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40)
|
|
@@ -57,10 +97,12 @@ Provide a concise, user-friendly interpretation of these findings in simple term
|
|
| 57 |
|
| 58 |
iface = gr.Interface(
|
| 59 |
fn=process_eeg,
|
| 60 |
-
inputs=gr.File(label="Upload your EEG data (FIF
|
| 61 |
outputs="text",
|
| 62 |
title="NeuroNarrative-Lite: EEG Summary",
|
| 63 |
-
description="Upload EEG data
|
|
|
|
|
|
|
| 64 |
)
|
| 65 |
|
| 66 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import mne
|
| 3 |
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
import torch
|
| 7 |
+
import os
|
| 8 |
|
| 9 |
# Load an open-source LLM model with no additional training
|
| 10 |
model_name = "tiiuae/falcon-7b-instruct"
|
|
|
|
| 20 |
"""Compute mean band power in the given frequency range."""
|
| 21 |
freq_mask = (freqs >= fmin) & (freqs <= fmax)
|
| 22 |
# Take the mean across channels and frequencies
|
| 23 |
+
band_psd = psd[:, freq_mask].mean()
|
| 24 |
return float(band_psd)
|
| 25 |
|
| 26 |
+
def load_eeg_data(file_path):
|
| 27 |
+
"""
|
| 28 |
+
Load EEG data from a file.
|
| 29 |
+
If FIF file is detected, use MNE's read_raw_fif.
|
| 30 |
+
If CSV file is detected, load via pandas and create a RawArray.
|
| 31 |
+
"""
|
| 32 |
+
_, file_ext = os.path.splitext(file_path)
|
| 33 |
+
file_ext = file_ext.lower()
|
| 34 |
+
|
| 35 |
+
if file_ext == '.fif':
|
| 36 |
+
raw = mne.io.read_raw_fif(file_path, preload=True)
|
| 37 |
+
elif file_ext == '.csv':
|
| 38 |
+
# Assume first column is 'time', and subsequent columns are channels
|
| 39 |
+
df = pd.read_csv(file_path)
|
| 40 |
+
if 'time' not in df.columns:
|
| 41 |
+
raise ValueError("CSV must contain a 'time' column for timestamps.")
|
| 42 |
+
|
| 43 |
+
time = df['time'].values
|
| 44 |
+
data = df.drop(columns=['time']).values.T # shape: (n_channels, n_samples)
|
| 45 |
+
|
| 46 |
+
# Estimate sampling frequency from time vector (assuming uniform)
|
| 47 |
+
# This is a simplistic approach: we take 1 / average time step.
|
| 48 |
+
# Make sure time is in seconds
|
| 49 |
+
if len(time) < 2:
|
| 50 |
+
raise ValueError("Not enough time points in CSV.")
|
| 51 |
+
sfreq = 1.0 / np.mean(np.diff(time))
|
| 52 |
+
|
| 53 |
+
# Create MNE Info
|
| 54 |
+
ch_names = list(df.columns)
|
| 55 |
+
ch_names.remove('time')
|
| 56 |
+
ch_types = ['eeg'] * len(ch_names)
|
| 57 |
+
info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
|
| 58 |
+
|
| 59 |
+
raw = mne.io.RawArray(data, info)
|
| 60 |
+
else:
|
| 61 |
+
raise ValueError("Unsupported file format. Please provide a FIF or CSV file.")
|
| 62 |
+
|
| 63 |
+
return raw
|
| 64 |
+
|
| 65 |
def process_eeg(file):
|
| 66 |
+
# Load EEG data
|
| 67 |
+
raw = load_eeg_data(file.name)
|
|
|
|
| 68 |
|
| 69 |
# Compute PSD (Power Spectral Density) between 1 and 40 Hz
|
| 70 |
psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40)
|
|
|
|
| 97 |
|
| 98 |
iface = gr.Interface(
|
| 99 |
fn=process_eeg,
|
| 100 |
+
inputs=gr.File(label="Upload your EEG data (FIF or CSV)"),
|
| 101 |
outputs="text",
|
| 102 |
title="NeuroNarrative-Lite: EEG Summary",
|
| 103 |
+
description=("Upload EEG data in FIF (MNE native) or CSV format. "
|
| 104 |
+
"The system extracts basic EEG features and generates "
|
| 105 |
+
"a human-readable summary using an open-source language model.")
|
| 106 |
)
|
| 107 |
|
| 108 |
if __name__ == "__main__":
|