Spaces:
Running
on
T4
Running
on
T4
update UI to support video inference
Browse files- app.py +120 -46
- utils/image.py +16 -0
app.py
CHANGED
|
@@ -1,22 +1,28 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import supervision as sv
|
|
|
|
| 3 |
from rfdetr import RFDETRBase, RFDETRLarge
|
|
|
|
| 4 |
from rfdetr.util.coco_classes import COCO_CLASSES
|
| 5 |
|
|
|
|
| 6 |
from utils.video import create_directory
|
| 7 |
|
| 8 |
MARKDOWN = """
|
| 9 |
# RF-DETR 🔥
|
| 10 |
|
| 11 |
-
<div
|
| 12 |
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-rf-detr-on-detection-dataset.ipynb">
|
| 13 |
-
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="colab"
|
| 14 |
</a>
|
| 15 |
<a href="https://blog.roboflow.com/rf-detr">
|
| 16 |
-
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="roboflow"
|
| 17 |
</a>
|
| 18 |
<a href="https://github.com/roboflow/rf-detr">
|
| 19 |
-
<img src="https://badges.aleen42.com/src/github.svg" alt="roboflow"
|
| 20 |
</a>
|
| 21 |
</div>
|
| 22 |
|
|
@@ -40,13 +46,12 @@ VIDEO_TARGET_DIRECTORY = "tmp"
|
|
| 40 |
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
|
| 41 |
|
| 42 |
|
| 43 |
-
def
|
| 44 |
-
model_class = RFDETRBase if checkpoint == "base" else RFDETRLarge
|
| 45 |
-
model = model_class(resolution=resolution)
|
| 46 |
detections = model.predict(image, threshold=confidence)
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
|
|
|
| 50 |
|
| 51 |
bbox_annotator = sv.BoxAnnotator(color=COLOR, thickness=thickness)
|
| 52 |
label_annotator = sv.LabelAnnotator(
|
|
@@ -67,55 +72,124 @@ def inference(image, confidence: float, resolution: int, checkpoint: str):
|
|
| 67 |
annotated_image = label_annotator.annotate(annotated_image, detections, labels)
|
| 68 |
return annotated_image
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
with gr.Blocks() as demo:
|
| 71 |
gr.Markdown(MARKDOWN)
|
| 72 |
-
with gr.
|
| 73 |
-
with gr.
|
| 74 |
-
|
| 75 |
-
label="
|
| 76 |
image_mode='RGB',
|
| 77 |
type='pil',
|
| 78 |
height=600
|
| 79 |
)
|
| 80 |
-
|
| 81 |
-
label="
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
value=0.5,
|
| 86 |
-
)
|
| 87 |
-
resolution_slider = gr.Slider(
|
| 88 |
-
label="Inference resolution",
|
| 89 |
-
minimum=560,
|
| 90 |
-
maximum=1120,
|
| 91 |
-
step=56,
|
| 92 |
-
value=728,
|
| 93 |
)
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
label="Checkpoint",
|
| 97 |
choices=["base", "large"],
|
| 98 |
value="base"
|
| 99 |
)
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
height=600
|
| 107 |
)
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
demo.launch(debug=False, show_error=True)
|
|
|
|
| 1 |
+
from typing import Union
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
import supervision as sv
|
| 6 |
+
from PIL import Image
|
| 7 |
from rfdetr import RFDETRBase, RFDETRLarge
|
| 8 |
+
from rfdetr.detr import RFDETR
|
| 9 |
from rfdetr.util.coco_classes import COCO_CLASSES
|
| 10 |
|
| 11 |
+
from utils.image import calculate_resolution_wh
|
| 12 |
from utils.video import create_directory
|
| 13 |
|
| 14 |
MARKDOWN = """
|
| 15 |
# RF-DETR 🔥
|
| 16 |
|
| 17 |
+
<div>
|
| 18 |
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-rf-detr-on-detection-dataset.ipynb">
|
| 19 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="colab" style="display:inline-block;">
|
| 20 |
</a>
|
| 21 |
<a href="https://blog.roboflow.com/rf-detr">
|
| 22 |
+
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="roboflow" style="display:inline-block;">
|
| 23 |
</a>
|
| 24 |
<a href="https://github.com/roboflow/rf-detr">
|
| 25 |
+
<img src="https://badges.aleen42.com/src/github.svg" alt="roboflow" style="display:inline-block;">
|
| 26 |
</a>
|
| 27 |
</div>
|
| 28 |
|
|
|
|
| 46 |
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
|
| 47 |
|
| 48 |
|
| 49 |
+
def detect_and_annotate(model: RFDETR, image: Union[Image.Image, np.ndarray], confidence: float):
|
|
|
|
|
|
|
| 50 |
detections = model.predict(image, threshold=confidence)
|
| 51 |
|
| 52 |
+
resolution_wh = calculate_resolution_wh(image)
|
| 53 |
+
text_scale = sv.calculate_optimal_text_scale(resolution_wh=resolution_wh) - 0.2
|
| 54 |
+
thickness = sv.calculate_optimal_line_thickness(resolution_wh=resolution_wh)
|
| 55 |
|
| 56 |
bbox_annotator = sv.BoxAnnotator(color=COLOR, thickness=thickness)
|
| 57 |
label_annotator = sv.LabelAnnotator(
|
|
|
|
| 72 |
annotated_image = label_annotator.annotate(annotated_image, detections, labels)
|
| 73 |
return annotated_image
|
| 74 |
|
| 75 |
+
|
| 76 |
+
def image_processing_inference(input_image: Image.Image, confidence: float, resolution: int, checkpoint: str):
|
| 77 |
+
model_class = RFDETRBase if checkpoint == "base" else RFDETRLarge
|
| 78 |
+
model = model_class(resolution=resolution)
|
| 79 |
+
return detect_and_annotate(model=model, image=input_image, confidence=confidence)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def video_processing_inference(input_video: str, confidence: float, resolution: int, checkpoint: str):
|
| 83 |
+
model_class = RFDETRBase if checkpoint == "base" else RFDETRLarge
|
| 84 |
+
model = model_class(resolution=resolution)
|
| 85 |
+
return input_video
|
| 86 |
+
|
| 87 |
with gr.Blocks() as demo:
|
| 88 |
gr.Markdown(MARKDOWN)
|
| 89 |
+
with gr.Tab("Image"):
|
| 90 |
+
with gr.Row():
|
| 91 |
+
image_processing_input_image = gr.Image(
|
| 92 |
+
label="Upload image",
|
| 93 |
image_mode='RGB',
|
| 94 |
type='pil',
|
| 95 |
height=600
|
| 96 |
)
|
| 97 |
+
image_processing_output_image = gr.Image(
|
| 98 |
+
label="Output image",
|
| 99 |
+
image_mode='RGB',
|
| 100 |
+
type='pil',
|
| 101 |
+
height=600
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
)
|
| 103 |
+
with gr.Row():
|
| 104 |
+
with gr.Column():
|
| 105 |
+
image_processing_confidence_slider = gr.Slider(
|
| 106 |
+
label="Confidence",
|
| 107 |
+
minimum=0.0,
|
| 108 |
+
maximum=1.0,
|
| 109 |
+
step=0.05,
|
| 110 |
+
value=0.5,
|
| 111 |
+
)
|
| 112 |
+
image_processing_resolution_slider = gr.Slider(
|
| 113 |
+
label="Inference resolution",
|
| 114 |
+
minimum=560,
|
| 115 |
+
maximum=1120,
|
| 116 |
+
step=56,
|
| 117 |
+
value=728,
|
| 118 |
+
)
|
| 119 |
+
image_processing_checkpoint_dropdown = gr.Dropdown(
|
| 120 |
label="Checkpoint",
|
| 121 |
choices=["base", "large"],
|
| 122 |
value="base"
|
| 123 |
)
|
| 124 |
+
with gr.Column():
|
| 125 |
+
image_processing_submit_button = gr.Button("Submit", value="primary")
|
| 126 |
+
|
| 127 |
+
gr.Examples(
|
| 128 |
+
fn=image_processing_inference,
|
| 129 |
+
examples=IMAGE_EXAMPLES,
|
| 130 |
+
inputs=[
|
| 131 |
+
image_processing_input_image,
|
| 132 |
+
image_processing_confidence_slider,
|
| 133 |
+
image_processing_resolution_slider,
|
| 134 |
+
image_processing_checkpoint_dropdown
|
| 135 |
+
],
|
| 136 |
+
outputs=image_processing_output_image,
|
| 137 |
+
cache_examples=True
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
image_processing_submit_button.click(
|
| 141 |
+
image_processing_inference,
|
| 142 |
+
inputs=[
|
| 143 |
+
image_processing_input_image,
|
| 144 |
+
image_processing_confidence_slider,
|
| 145 |
+
image_processing_resolution_slider,
|
| 146 |
+
image_processing_checkpoint_dropdown
|
| 147 |
+
],
|
| 148 |
+
outputs=image_processing_output_image
|
| 149 |
+
)
|
| 150 |
+
with gr.Tab("Video"):
|
| 151 |
+
with gr.Row():
|
| 152 |
+
video_processing_input_video = gr.Video(
|
| 153 |
+
label='Upload video',
|
| 154 |
height=600
|
| 155 |
)
|
| 156 |
+
video_processing_output_video = gr.Video(
|
| 157 |
+
label='Output video',
|
| 158 |
+
height=600
|
| 159 |
+
)
|
| 160 |
+
with gr.Row():
|
| 161 |
+
with gr.Column():
|
| 162 |
+
video_processing_confidence_slider = gr.Slider(
|
| 163 |
+
label="Confidence",
|
| 164 |
+
minimum=0.0,
|
| 165 |
+
maximum=1.0,
|
| 166 |
+
step=0.05,
|
| 167 |
+
value=0.5,
|
| 168 |
+
)
|
| 169 |
+
video_processing_resolution_slider = gr.Slider(
|
| 170 |
+
label="Inference resolution",
|
| 171 |
+
minimum=560,
|
| 172 |
+
maximum=1120,
|
| 173 |
+
step=56,
|
| 174 |
+
value=728,
|
| 175 |
+
)
|
| 176 |
+
video_processing_checkpoint_dropdown = gr.Dropdown(
|
| 177 |
+
label="Checkpoint",
|
| 178 |
+
choices=["base", "large"],
|
| 179 |
+
value="base"
|
| 180 |
+
)
|
| 181 |
+
with gr.Column():
|
| 182 |
+
video_processing_submit_button = gr.Button("Submit", value="primary")
|
| 183 |
+
|
| 184 |
+
video_processing_submit_button.click(
|
| 185 |
+
video_processing_inference,
|
| 186 |
+
inputs=[
|
| 187 |
+
video_processing_input_video,
|
| 188 |
+
video_processing_confidence_slider,
|
| 189 |
+
video_processing_resolution_slider,
|
| 190 |
+
video_processing_checkpoint_dropdown
|
| 191 |
+
],
|
| 192 |
+
outputs=video_processing_output_video
|
| 193 |
+
)
|
| 194 |
|
| 195 |
demo.launch(debug=False, show_error=True)
|
utils/image.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple, Union
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
def calculate_resolution_wh(image: Union[Image.Image, np.ndarray]) -> Tuple[int, int]:
|
| 6 |
+
|
| 7 |
+
if isinstance(image, Image.Image):
|
| 8 |
+
return image.size
|
| 9 |
+
elif isinstance(image, np.ndarray):
|
| 10 |
+
if image.ndim >= 2:
|
| 11 |
+
h, w = image.shape[:2]
|
| 12 |
+
return w, h
|
| 13 |
+
else:
|
| 14 |
+
raise ValueError("Input numpy array image must have at least 2 dimensions (height, width).")
|
| 15 |
+
else:
|
| 16 |
+
raise TypeError("Input image must be a Pillow Image or a numpy array.")
|