inxai_steamlit / app.py
Robin246's picture
Update app.py
3dbf704 verified
import streamlit as st
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
def generate_response(input_prompt, model_path):
if model_path == 'google/flan-t5-small':
model_name = 'Google Flan T5'
elif model_path == 'MBZUAI/LaMini-Flan-T5-77M':
model_name = 'Lamini Flan T5'
else:
model_name = 'INXAI'
fine_tuned_model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
if model_path == 'MBZUAI/LaMini-Flan-T5-77M':
tokenizer = T5Tokenizer.from_pretrained('t5-base')
else:
tokenizer = T5Tokenizer.from_pretrained(model_path)
input_text = f"Input prompt: {input_prompt}"
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=64, padding="max_length", truncation=True)
output_ids = fine_tuned_model.generate(input_ids, max_length=256, num_return_sequences=1, num_beams=2, early_stopping=True)
generated_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return generated_output, model_name
def main():
st.title("INXAI LLM Model\nCompare with base models")
model_selection = st.selectbox("Choose INXAI from the dropdown", ["google/flan-t5-small", "MBZUAI/LaMini-Flan-T5-77M", "Robin246/inxai_v1.1"])
input_prompt = st.text_input("Enter input text")
if st.button("Generate"):
reply, model_name = generate_response(input_prompt, model_selection)
st.write(f"Generated Reply : {reply}")
if __name__ == "__main__":
main()