Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer | |
def generate_response(input_prompt, model_path): | |
if model_path == 'google/flan-t5-small': | |
model_name = 'Google Flan T5' | |
elif model_path == 'MBZUAI/LaMini-Flan-T5-77M': | |
model_name = 'Lamini Flan T5' | |
else: | |
model_name = 'INXAI' | |
fine_tuned_model = AutoModelForSeq2SeqLM.from_pretrained(model_path) | |
if model_path == 'MBZUAI/LaMini-Flan-T5-77M': | |
tokenizer = T5Tokenizer.from_pretrained('t5-base') | |
else: | |
tokenizer = T5Tokenizer.from_pretrained(model_path) | |
input_text = f"Input prompt: {input_prompt}" | |
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=64, padding="max_length", truncation=True) | |
output_ids = fine_tuned_model.generate(input_ids, max_length=256, num_return_sequences=1, num_beams=2, early_stopping=True) | |
generated_output = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return generated_output, model_name | |
def main(): | |
st.title("INXAI LLM Model\nCompare with base models") | |
model_selection = st.selectbox("Choose INXAI from the dropdown", ["google/flan-t5-small", "MBZUAI/LaMini-Flan-T5-77M", "Robin246/inxai_v1.1"]) | |
input_prompt = st.text_input("Enter input text") | |
if st.button("Generate"): | |
reply, model_name = generate_response(input_prompt, model_selection) | |
st.write(f"Generated Reply : {reply}") | |
if __name__ == "__main__": | |
main() |