# -*- coding: utf-8 -*- import requests from bs4 import BeautifulSoup import pandas as pd import jieba from keybert import KeyBERT from sklearn.feature_extraction.text import CountVectorizer import streamlit as st import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties # 下載字體 def download_font(url, save_path): response = requests.get(url) with open(save_path, 'wb') as f: f.write(response.content) # 字體URL和保存路徑 font_url = 'https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download' font_path = 'TaipeiSansTCBeta-Regular.ttf' # 下載字體 download_font(font_url, font_path) # 設置字體 font_prop = FontProperties(fname=font_path) # 定義斷詞函數 def jieba_tokenizer(text): return jieba.lcut(text) # 初始化CountVectorizer並定義KeyBERT模型 vectorizer = CountVectorizer(tokenizer=jieba_tokenizer) kw_model = KeyBERT() # 提取關鍵詞的函數 def extract_keywords(doc): keywords = kw_model.extract_keywords(doc, vectorizer=vectorizer) return keywords # 畫圖函數 def plot_keywords(keywords, title): words = [kw[0] for kw in keywords] scores = [kw[1] for kw in keywords] plt.figure(figsize=(10, 6)) plt.barh(words, scores, color='skyblue') plt.xlabel('分數', fontproperties=font_prop) plt.title(title, fontproperties=font_prop) plt.gca().invert_yaxis() # 反轉Y軸,使得分數最高的關鍵詞在最上面 plt.xticks(fontproperties=font_prop) plt.yticks(fontproperties=font_prop) st.pyplot(plt) # Web scraping部分 def fetch_article(url): response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') title = soup.find('h1').get_text() content_paragraphs = soup.find_all('p') content = ' '.join([para.get_text() for para in content_paragraphs]) return title, content # Streamlit應用程式 st.title("中文關鍵詞提取工具") url = st.text_input("請輸入Yahoo新聞文章的URL:") if url: title, content = fetch_article(url) st.write("文章標題:", title) st.write("文章內容:", content) if st.button("提取關鍵詞"): keywords = extract_keywords(content) st.write("關鍵詞提取結果:") for keyword in keywords: st.write(f"{keyword[0]}: {keyword[1]:.4f}") plot_keywords(keywords, "關鍵詞提取結果") # 使用另一個模型進行關鍵詞提取 kw_model_multilingual = KeyBERT(model='distiluse-base-multilingual-cased-v1') keywords_multilingual = kw_model_multilingual.extract_keywords(content, vectorizer=vectorizer) st.write("多語言模型關鍵詞提取結果:") for keyword in keywords_multilingual: st.write(f"{keyword[0]}: {keyword[1]:.4f}") plot_keywords(keywords_multilingual, "多語言模型關鍵詞提取結果") else: st.write("請輸入文章的URL以進行關鍵詞提取。")