Spaces:
Sleeping
Sleeping
File size: 2,997 Bytes
46427cb 522aea1 46427cb 522aea1 46427cb 522aea1 46427cb 522aea1 46427cb 522aea1 46427cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# -*- coding: utf-8 -*-
import requests
from bs4 import BeautifulSoup
import pandas as pd
import jieba
from keybert import KeyBERT
from sklearn.feature_extraction.text import CountVectorizer
import streamlit as st
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
# 下載字體
def download_font(url, save_path):
response = requests.get(url)
with open(save_path, 'wb') as f:
f.write(response.content)
# 字體URL和保存路徑
font_url = 'https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download'
font_path = 'TaipeiSansTCBeta-Regular.ttf'
# 下載字體
download_font(font_url, font_path)
# 設置字體
font_prop = FontProperties(fname=font_path)
# 定義斷詞函數
def jieba_tokenizer(text):
return jieba.lcut(text)
# 初始化CountVectorizer並定義KeyBERT模型
vectorizer = CountVectorizer(tokenizer=jieba_tokenizer)
kw_model = KeyBERT()
# 提取關鍵詞的函數
def extract_keywords(doc):
keywords = kw_model.extract_keywords(doc, vectorizer=vectorizer)
return keywords
# 畫圖函數
def plot_keywords(keywords, title):
words = [kw[0] for kw in keywords]
scores = [kw[1] for kw in keywords]
plt.figure(figsize=(10, 6))
plt.barh(words, scores, color='skyblue')
plt.xlabel('分數', fontproperties=font_prop)
plt.title(title, fontproperties=font_prop)
plt.gca().invert_yaxis() # 反轉Y軸,使得分數最高的關鍵詞在最上面
plt.xticks(fontproperties=font_prop)
plt.yticks(fontproperties=font_prop)
st.pyplot(plt)
# Web scraping部分
def fetch_article(url):
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
title = soup.find('h1').get_text()
content_paragraphs = soup.find_all('p')
content = ' '.join([para.get_text() for para in content_paragraphs])
return title, content
# Streamlit應用程式
st.title("中文關鍵詞提取工具")
url = st.text_input("請輸入Yahoo新聞文章的URL:")
if url:
title, content = fetch_article(url)
st.write("文章標題:", title)
st.write("文章內容:", content)
if st.button("提取關鍵詞"):
keywords = extract_keywords(content)
st.write("關鍵詞提取結果:")
for keyword in keywords:
st.write(f"{keyword[0]}: {keyword[1]:.4f}")
plot_keywords(keywords, "關鍵詞提取結果")
# 使用另一個模型進行關鍵詞提取
kw_model_multilingual = KeyBERT(model='distiluse-base-multilingual-cased-v1')
keywords_multilingual = kw_model_multilingual.extract_keywords(content, vectorizer=vectorizer)
st.write("多語言模型關鍵詞提取結果:")
for keyword in keywords_multilingual:
st.write(f"{keyword[0]}: {keyword[1]:.4f}")
plot_keywords(keywords_multilingual, "多語言模型關鍵詞提取結果")
else:
st.write("請輸入文章的URL以進行關鍵詞提取。")
|