Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
from sklearn.ensemble import RandomForestClassifier
|
| 6 |
from xgboost import XGBClassifier
|
| 7 |
from sklearn.tree import DecisionTreeClassifier
|
|
@@ -38,14 +38,26 @@ def calculate_importances(file):
|
|
| 38 |
feature_names = X.columns
|
| 39 |
|
| 40 |
# Prepare DataFrame
|
| 41 |
-
rf_importance =
|
| 42 |
-
xgb_importance =
|
| 43 |
-
cart_importance =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# Correlation Matrix
|
| 46 |
corr_matrix = heart_df.corr()
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
# Streamlit interface
|
| 51 |
st.title("Feature Importance Calculation")
|
|
@@ -55,24 +67,44 @@ uploaded_file = st.file_uploader("Upload heart.csv file", type=['csv'])
|
|
| 55 |
|
| 56 |
if uploaded_file is not None:
|
| 57 |
# Process the file and get results
|
| 58 |
-
|
| 59 |
|
| 60 |
-
# Display
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
st.write("Correlation Matrix:")
|
| 62 |
-
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
-
# Plot and display
|
| 66 |
st.write("Random Forest Feature Importance:")
|
| 67 |
-
fig_rf =
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
# Plot and display
|
| 71 |
st.write("XGBoost Feature Importance:")
|
| 72 |
-
fig_xgb =
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
# Plot and display
|
| 76 |
st.write("CART (Decision Tree) Feature Importance:")
|
| 77 |
-
fig_cart
|
| 78 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import seaborn as sns
|
| 5 |
from sklearn.ensemble import RandomForestClassifier
|
| 6 |
from xgboost import XGBClassifier
|
| 7 |
from sklearn.tree import DecisionTreeClassifier
|
|
|
|
| 38 |
feature_names = X.columns
|
| 39 |
|
| 40 |
# Prepare DataFrame
|
| 41 |
+
rf_importance = {'Feature': feature_names, 'Random Forest': rf_importances}
|
| 42 |
+
xgb_importance = {'Feature': feature_names, 'XGBoost': xgb_importances}
|
| 43 |
+
cart_importance = {'Feature': feature_names, 'CART': cart_importances}
|
| 44 |
+
|
| 45 |
+
# Create DataFrames
|
| 46 |
+
rf_df = pd.DataFrame(rf_importance)
|
| 47 |
+
xgb_df = pd.DataFrame(xgb_importance)
|
| 48 |
+
cart_df = pd.DataFrame(cart_importance)
|
| 49 |
+
|
| 50 |
+
# Merge DataFrames
|
| 51 |
+
importance_df = rf_df.merge(xgb_df, on='Feature').merge(cart_df, on='Feature')
|
| 52 |
|
| 53 |
# Correlation Matrix
|
| 54 |
corr_matrix = heart_df.corr()
|
| 55 |
|
| 56 |
+
# Save to Excel
|
| 57 |
+
file_name = 'feature_importances.xlsx'
|
| 58 |
+
importance_df.to_excel(file_name, index=False)
|
| 59 |
+
|
| 60 |
+
return file_name, importance_df, corr_matrix, rf_importances, xgb_importances, cart_importances, feature_names
|
| 61 |
|
| 62 |
# Streamlit interface
|
| 63 |
st.title("Feature Importance Calculation")
|
|
|
|
| 67 |
|
| 68 |
if uploaded_file is not None:
|
| 69 |
# Process the file and get results
|
| 70 |
+
excel_file, importance_df, corr_matrix, rf_importances, xgb_importances, cart_importances, feature_names = calculate_importances(uploaded_file)
|
| 71 |
|
| 72 |
+
# Display a preview of the DataFrame
|
| 73 |
+
st.write("Feature Importances (Preview):")
|
| 74 |
+
st.dataframe(importance_df.head())
|
| 75 |
+
|
| 76 |
+
# Provide a link to download the Excel file
|
| 77 |
+
with open(excel_file, "rb") as file:
|
| 78 |
+
btn = st.download_button(
|
| 79 |
+
label="Download Excel File",
|
| 80 |
+
data=file,
|
| 81 |
+
file_name=excel_file,
|
| 82 |
+
mime="application/vnd.ms-excel"
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Plot and display the Correlation Matrix
|
| 86 |
st.write("Correlation Matrix:")
|
| 87 |
+
plt.figure(figsize=(10, 8))
|
| 88 |
+
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", cbar=True)
|
| 89 |
+
st.pyplot(plt)
|
| 90 |
|
| 91 |
+
# Plot and display the Feature Importance (Random Forest)
|
| 92 |
st.write("Random Forest Feature Importance:")
|
| 93 |
+
fig_rf, ax_rf = plt.subplots()
|
| 94 |
+
sns.barplot(x=rf_importances, y=feature_names, ax=ax_rf)
|
| 95 |
+
ax_rf.set_title('Random Forest Feature Importances')
|
| 96 |
+
st.pyplot(fig_rf)
|
| 97 |
|
| 98 |
+
# Plot and display the Feature Importance (XGBoost)
|
| 99 |
st.write("XGBoost Feature Importance:")
|
| 100 |
+
fig_xgb, ax_xgb = plt.subplots()
|
| 101 |
+
sns.barplot(x=xgb_importances, y=feature_names, ax=ax_xgb)
|
| 102 |
+
ax_xgb.set_title('XGBoost Feature Importances')
|
| 103 |
+
st.pyplot(fig_xgb)
|
| 104 |
|
| 105 |
+
# Plot and display the Feature Importance (Decision Tree - CART)
|
| 106 |
st.write("CART (Decision Tree) Feature Importance:")
|
| 107 |
+
fig_cart, ax_cart = plt.subplots()
|
| 108 |
+
sns.barplot(x=cart_importances, y=feature_names, ax=ax_cart)
|
| 109 |
+
ax_cart.set_title('CART (Decision Tree) Feature Importances')
|
| 110 |
+
st.pyplot(fig_cart)
|