Spaces:
Sleeping
Sleeping
import requests | |
import pandas as pd | |
import json | |
import time | |
import plotly.graph_objs as go | |
import streamlit as st | |
from pytrends.request import TrendReq | |
# Streamlit app title | |
st.title("MOMO & PCHOME 商品搜索和價格分析 + Google 趨勢") | |
# Input fields | |
search_keyword = st.text_input("請輸入要搜索的關鍵字:", "平板") | |
page_number = st.number_input("請輸入要搜索的頁數:", value=1, min_value=1, max_value=100) | |
start_date = st.text_input("請輸入 Google 趨勢的開始日期 (格式: YYYY-MM-DD):", "2024-08-01") | |
end_date = st.text_input("請輸入 Google 趨勢的結束日期 (格式: YYYY-MM-DD):", "2024-08-11") | |
# Create a button to start the process | |
if st.button("開始搜索"): | |
# MOMO scraping | |
momo_url = "https://apisearch.momoshop.com.tw/momoSearchCloud/moec/textSearch" | |
momo_headers = { | |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36" | |
} | |
momo_payload = { | |
"host": "momoshop", | |
"flag": "searchEngine", | |
"data": { | |
"searchValue": search_keyword, | |
"curPage": str(page_number), | |
"priceS": "0", | |
"priceE": "9999999", | |
"searchType": "1" | |
} | |
} | |
momo_response = requests.post(momo_url, headers=momo_headers, json=momo_payload) | |
momo_df = pd.DataFrame() | |
if momo_response.status_code == 200: | |
momo_data = momo_response.json().get('rtnSearchData', {}).get('goodsInfoList', []) | |
momo_product_list = [] | |
for product in momo_data: | |
name = product.get('goodsName', '') | |
price = product.get('goodsPrice', '') | |
price_str = str(price).split('(')[0].replace(',', '').replace('$', '') | |
try: | |
product_price = float(price_str) | |
except ValueError: | |
product_price = 0 | |
momo_product_list.append({'title': name, 'price': product_price, 'source': 'MOMO'}) | |
momo_df = pd.DataFrame(momo_product_list) | |
st.write("MOMO 商品數據:", momo_df) | |
# PCHOME scraping | |
pchome_base_url = 'https://ecshweb.pchome.com.tw/search/v3.3/all/results?q=' | |
pchome_data = pd.DataFrame() | |
for i in range(1, page_number + 1): | |
pchome_url = f'{pchome_base_url}{search_keyword}&page={i}&sort=sale/dc' | |
pchome_response = requests.get(pchome_url) | |
if pchome_response.status_code == 200: | |
pchome_json_data = json.loads(pchome_response.content) | |
pchome_df = pd.DataFrame(pchome_json_data['prods']) | |
# Safely select only available columns | |
available_columns = ['name', 'describe', 'price', 'orig'] | |
selected_columns = [col for col in available_columns if col in pchome_df.columns] | |
pchome_df = pchome_df[selected_columns] | |
if 'orig' in pchome_df.columns: | |
pchome_df = pchome_df.rename(columns={'orig': 'original_price'}) | |
pchome_df['source'] = 'PCHOME' | |
pchome_data = pd.concat([pchome_data, pchome_df]) | |
time.sleep(1) | |
if not pchome_data.empty: | |
st.write("PCHOME 商品數據:", pchome_data) | |
# Combine MOMO and PCHOME data for overall analysis | |
combined_df = pd.concat([momo_df, pchome_data], ignore_index=True) | |
# Google Trends Analysis | |
pytrend = TrendReq(hl="zh-TW", tz=-480) | |
time_range = f'{start_date} {end_date}' | |
pytrend.build_payload(kw_list=[search_keyword], cat=0, timeframe=time_range, geo="TW", gprop="") | |
trend_data = pytrend.interest_over_time().drop(columns=["isPartial"]) | |
if not trend_data.empty: | |
st.write("Google 趨勢數據:", trend_data) | |
# MOMO Plot | |
if not momo_df.empty: | |
momo_avg_price = momo_df['price'].mean() | |
momo_fig = go.Figure() | |
momo_fig.add_trace(go.Scatter( | |
x=momo_df['title'], | |
y=momo_df['price'], | |
mode='markers', | |
marker=dict(color='blue'), | |
name='MOMO 價格' | |
)) | |
momo_fig.add_hline(y=momo_avg_price, line_dash="dash", line_color="red", | |
annotation_text=f'平均價格: {momo_avg_price:.2f}', annotation_position="top right") | |
momo_fig.update_layout( | |
title=f'MOMO 電商網站上 "{search_keyword}" 的銷售價格 (平均價格: {momo_avg_price:.2f})', | |
xaxis_title='商品名稱', | |
yaxis_title='價格', | |
yaxis=dict(range=[0, momo_df['price'].max() * 1.2]), # Extend Y-axis | |
xaxis_tickfont=dict(size=10, family="Arial, italic") # Italic and smaller font for product names | |
) | |
st.plotly_chart(momo_fig) | |
# PCHOME Plot | |
if not pchome_data.empty: | |
pchome_avg_price = pchome_data['price'].mean() | |
pchome_fig = go.Figure() | |
pchome_fig.add_trace(go.Scatter( | |
x=pchome_data['name'], | |
y=pchome_data['price'], | |
mode='markers', | |
marker=dict(color='green'), | |
name='PCHOME 價格' | |
)) | |
pchome_fig.add_hline(y=pchome_avg_price, line_dash="dash", line_color="red", | |
annotation_text=f'平均價格: {pchome_avg_price:.2f}', annotation_position="top right") | |
pchome_fig.update_layout( | |
title=f'PCHOME 電商網站上 "{search_keyword}" 的銷售價格 (平均價格: {pchome_avg_price:.2f})', | |
xaxis_title='商品名稱', | |
yaxis_title='價格', | |
yaxis=dict(range=[0, pchome_data['price'].max() * 1.2]), # Extend Y-axis | |
xaxis_tickfont=dict(size=10, family="Arial, italic") # Italic and smaller font for product names | |
) | |
st.plotly_chart(pchome_fig) | |
# Pie Chart based on prices | |
if not combined_df.empty: | |
pie_fig = go.Figure(go.Pie( | |
labels=combined_df['title'], | |
values=combined_df['price'], | |
textinfo='label+percent', | |
insidetextorientation='radial' | |
)) | |
pie_fig.update_layout(title="商品價格比例圖") | |
st.plotly_chart(pie_fig) | |
# MOMO Sunburst Chart | |
if not momo_df.empty: | |
sunburst_momo_fig = go.Figure(go.Sunburst( | |
labels=momo_df['title'], | |
parents=momo_df['source'], | |
values=momo_df['price'], | |
branchvalues='total', | |
textinfo='label+percent parent' | |
)) | |
sunburst_momo_fig.update_layout(title="MOMO 商品價格 Sunburst 圖") | |
st.plotly_chart(sunburst_momo_fig) | |
# PCHOME Sunburst Chart | |
if not pchome_data.empty: | |
sunburst_pchome_fig = go.Figure(go.Sunburst( | |
labels=pchome_data['name'], | |
parents=pchome_data['source'], | |
values=pchome_data['price'], | |
branchvalues='total', | |
textinfo='label+percent parent' | |
)) | |
sunburst_pchome_fig.update_layout(title="PCHOME 商品價格 Sunburst 圖") | |
st.plotly_chart(sunburst_pchome_fig) | |
# Google Trends Plot | |
if not trend_data.empty: | |
trends_fig = go.Figure() | |
trends_fig.add_trace(go.Scatter( | |
x=trend_data.index, | |
y=trend_data[search_keyword], | |
mode='lines', | |
line=dict(color='purple'), | |
name='Google 趨勢' | |
)) | |
trends_fig.update_layout(title=f'Google 趨勢 - "{search_keyword}"', xaxis_title='時間', yaxis_title='熱門度') | |
st.plotly_chart(trends_fig) | |