# -*- coding: utf-8 -*- """keyword_extraction""" import requests import jieba from keybert import KeyBERT from sklearn.feature_extraction.text import CountVectorizer import streamlit as st import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties # 下載字體 def download_font(url, save_path): response = requests.get(url) with open(save_path, 'wb') as f: f.write(response.content) # 字體URL和保存路徑 font_url = 'https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download' font_path = 'TaipeiSansTCBeta-Regular.ttf' # 下載字體 download_font(font_url, font_path) # 設置字體 font_prop = FontProperties(fname=font_path) # 讀取繁體中文詞典 # jieba.set_dictionary('path_to_your_dict.txt') # 繁體中文詞典的實際路徑,若需要繁體字典請取消註解並設置正確路徑 # 2. 定義斷詞函數 def jieba_tokenizer(text): return jieba.lcut(text) # 3. 初始化CountVectorizer並定義KeyBERT模型 vectorizer = CountVectorizer(tokenizer=jieba_tokenizer) kw_model = KeyBERT() # 4. 提取關鍵詞的函數 def extract_keywords(doc): keywords = kw_model.extract_keywords(doc, vectorizer=vectorizer) return keywords # 5. 畫圖函數 def plot_keywords(keywords, title): words = [kw[0] for kw in keywords] scores = [kw[1] for kw in keywords] plt.figure(figsize=(10, 6)) plt.barh(words, scores, color='skyblue') plt.xlabel('分數', fontproperties=font_prop) plt.title(title, fontproperties=font_prop) plt.gca().invert_yaxis() # 反轉Y軸,使得分數最高的關鍵詞在最上面 plt.xticks(fontproperties=font_prop) plt.yticks(fontproperties=font_prop) st.pyplot(plt) # 6. 建立Streamlit網頁應用程式 st.title("中文關鍵詞提取工具") doc = st.text_area("請輸入文章:") if st.button("提取關鍵詞"): if doc: keywords = extract_keywords(doc) st.write("關鍵詞提取結果:") for keyword in keywords: st.write(f"{keyword[0]}: {keyword[1]:.4f}") plot_keywords(keywords, "關鍵詞提取結果") # 使用另一個模型進行關鍵詞提取 kw_model_multilingual = KeyBERT(model='distiluse-base-multilingual-cased-v1') keywords_multilingual = kw_model_multilingual.extract_keywords(doc, vectorizer=vectorizer) st.write("多語言模型關鍵詞提取結果:") for keyword in keywords_multilingual: st.write(f"{keyword[0]}: {keyword[1]:.4f}") plot_keywords(keywords_multilingual, "多語言模型關鍵詞提取結果") else: st.write("請輸入文章內容以進行關鍵詞提取。")