import requests from bs4 import BeautifulSoup import pandas as pd import jieba from keybert import KeyBERT from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer import streamlit as st import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from wordcloud import WordCloud from gensim import corpora, models # 下載字體 def download_font(url, save_path): response = requests.get(url) with open(save_path, 'wb') as f: f.write(response.content) # 字體URL和保存路徑 font_url = 'https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download' font_path = 'TaipeiSansTCBeta-Regular.ttf' # 下載字體 download_font(font_url, font_path) # 設置字體 font_prop = FontProperties(fname=font_path) # 抓取Yahoo新聞標題和內容 def fetch_yahoo_news(url): response = requests.get(url) web_content = response.content soup = BeautifulSoup(web_content, 'html.parser') title = soup.find('h1').text content = soup.find('article').text return title, content # 斷詞函數 def jieba_tokenizer(text): return jieba.lcut(text) # 初始化CountVectorizer並定義KeyBERT模型 vectorizer = CountVectorizer(tokenizer=jieba_tokenizer) kw_model = KeyBERT() # 提取關鍵詞的函數(使用MMR) def extract_keywords(doc, diversity=0.7): keywords = kw_model.extract_keywords(doc, vectorizer=vectorizer, use_mmr=True, diversity=diversity) return keywords # 畫圖函數 def plot_keywords(keywords, title): words = [kw[0] for kw in keywords] scores = [kw[1] for kw in keywords] plt.figure(figsize=(10, 6)) bars = plt.barh(words, scores, color='skyblue', edgecolor='black', linewidth=1.2) plt.xlabel('分數', fontproperties=font_prop, fontsize=14) plt.title(title, fontproperties=font_prop, fontsize=16) plt.gca().invert_yaxis() # 反轉Y軸,使得分數最高的關鍵詞在最上面 plt.xticks(fontproperties=font_prop, fontsize=12) plt.yticks(fontproperties=font_prop, fontsize=12) plt.grid(axis='x', linestyle='--', alpha=0.7) # 添加分數標籤 for bar in bars: plt.gca().text(bar.get_width() + 0.01, bar.get_y() + bar.get_height() / 2, f'{bar.get_width():.4f}', va='center', ha='left', fontsize=12, fontproperties=font_prop) st.pyplot(plt) # 生成TF-IDF文字雲的函數 def plot_wordcloud(text): tfidf_vectorizer = TfidfVectorizer(tokenizer=jieba_tokenizer) tfidf_matrix = tfidf_vectorizer.fit_transform([text]) tfidf_scores = dict(zip(tfidf_vectorizer.get_feature_names_out(), tfidf_matrix.toarray().flatten())) wordcloud = WordCloud(font_path=font_path, background_color='white', max_words=100, width=800, height=400) wordcloud.generate_from_frequencies(tfidf_scores) plt.figure(figsize=(10, 6)) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.title('TF-IDF文字雲', fontproperties=font_prop, fontsize=16) st.pyplot(plt) # LDA主題模型函數 def lda_topic_modeling(text, num_topics=5): # 斷詞並創建字典和語料庫 tokens = jieba_tokenizer(text) dictionary = corpora.Dictionary([tokens]) corpus = [dictionary.doc2bow(tokens)] # 生成LDA模型 lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15) # 提取主題 topics = lda_model.print_topics(num_words=5) return topics # 建立Streamlit網頁應用程式 st.title("🤙🤙🤙YAHOO新聞關鍵詞提取工具👂👂") # 設置MMR多樣性參數 diversity = st.slider("選擇MMR多樣性參數", 0.0, 1.0, 0.7) # 抓取Yahoo新聞的URL輸入框 url = st.text_input("請輸入Yahoo新聞的URL:") if st.button("抓取並提取關鍵詞"): if url: title, content = fetch_yahoo_news(url) st.write("新聞標題:", title) st.write("新聞內容:", content) # 將內容轉為DataFrame data = {'Title': [title], 'Content': [content]} df = pd.DataFrame(data) st.write("新聞內容的DataFrame:") st.write(df) # 提取關鍵詞 keywords = extract_keywords(content, diversity=diversity) st.write("關鍵詞提取結果:") for keyword in keywords: st.write(f"{keyword[0]}: {keyword[1]:.4f}") plot_keywords(keywords, "關鍵詞提取結果") # 使用另一個模型進行關鍵詞提取 kw_model_multilingual = KeyBERT(model='distiluse-base-multilingual-cased-v1') keywords_multilingual = kw_model_multilingual.extract_keywords(content, vectorizer=vectorizer, use_mmr=True, diversity=diversity) st.write("多語言模型關鍵詞提取結果:") for keyword in keywords_multilingual: st.write(f"{keyword[0]}: {keyword[1]:.4f}") plot_keywords(keywords_multilingual, "多語言模型關鍵詞提取結果") # 生成TF-IDF文字雲 plot_wordcloud(content) # LDA主題模型 num_topics = st.slider("選擇LDA主題數量", 1, 10, 5) lda_topics = lda_topic_modeling(content, num_topics=num_topics) st.write("LDA主題模型結果:") for topic in lda_topics: st.write(f"主題 {topic[0]}: {topic[1]}") else: st.write("請輸入有效的Yahoo新聞URL。")