Roberta2024's picture
Create app.py
2755a07 verified
import requests
from bs4 import BeautifulSoup
import pandas as pd
import jieba
from keybert import KeyBERT
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
import streamlit as st
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from wordcloud import WordCloud
from gensim import corpora, models
# 下載字體
def download_font(url, save_path):
response = requests.get(url)
with open(save_path, 'wb') as f:
f.write(response.content)
# 字體URL和保存路徑
font_url = 'https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download'
font_path = 'TaipeiSansTCBeta-Regular.ttf'
# 下載字體
download_font(font_url, font_path)
# 設置字體
font_prop = FontProperties(fname=font_path)
# 抓取Yahoo新聞標題和內容
def fetch_yahoo_news(url):
response = requests.get(url)
web_content = response.content
soup = BeautifulSoup(web_content, 'html.parser')
title = soup.find('h1').text
content = soup.find('article').text
return title, content
# 斷詞函數
def jieba_tokenizer(text):
return jieba.lcut(text)
# 初始化CountVectorizer並定義KeyBERT模型
vectorizer = CountVectorizer(tokenizer=jieba_tokenizer)
kw_model = KeyBERT()
# 提取關鍵詞的函數(使用MMR)
def extract_keywords(doc, diversity=0.7):
keywords = kw_model.extract_keywords(doc, vectorizer=vectorizer, use_mmr=True, diversity=diversity)
return keywords
# 畫圖函數
def plot_keywords(keywords, title):
words = [kw[0] for kw in keywords]
scores = [kw[1] for kw in keywords]
plt.figure(figsize=(10, 6))
bars = plt.barh(words, scores, color='skyblue', edgecolor='black', linewidth=1.2)
plt.xlabel('分數', fontproperties=font_prop, fontsize=14)
plt.title(title, fontproperties=font_prop, fontsize=16)
plt.gca().invert_yaxis() # 反轉Y軸,使得分數最高的關鍵詞在最上面
plt.xticks(fontproperties=font_prop, fontsize=12)
plt.yticks(fontproperties=font_prop, fontsize=12)
plt.grid(axis='x', linestyle='--', alpha=0.7)
# 添加分數標籤
for bar in bars:
plt.gca().text(bar.get_width() + 0.01, bar.get_y() + bar.get_height() / 2,
f'{bar.get_width():.4f}', va='center', ha='left', fontsize=12, fontproperties=font_prop)
st.pyplot(plt)
# 生成TF-IDF文字雲的函數
def plot_wordcloud(text):
tfidf_vectorizer = TfidfVectorizer(tokenizer=jieba_tokenizer)
tfidf_matrix = tfidf_vectorizer.fit_transform([text])
tfidf_scores = dict(zip(tfidf_vectorizer.get_feature_names_out(), tfidf_matrix.toarray().flatten()))
wordcloud = WordCloud(font_path=font_path, background_color='white', max_words=100, width=800, height=400)
wordcloud.generate_from_frequencies(tfidf_scores)
plt.figure(figsize=(10, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('TF-IDF文字雲', fontproperties=font_prop, fontsize=16)
st.pyplot(plt)
# LDA主題模型函數
def lda_topic_modeling(text, num_topics=5):
# 斷詞並創建字典和語料庫
tokens = jieba_tokenizer(text)
dictionary = corpora.Dictionary([tokens])
corpus = [dictionary.doc2bow(tokens)]
# 生成LDA模型
lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15)
# 提取主題
topics = lda_model.print_topics(num_words=5)
return topics
# 建立Streamlit網頁應用程式
st.title("🤙🤙🤙YAHOO新聞關鍵詞提取工具👂👂")
# 設置MMR多樣性參數
diversity = st.slider("選擇MMR多樣性參數", 0.0, 1.0, 0.7)
# 抓取Yahoo新聞的URL輸入框
url = st.text_input("請輸入Yahoo新聞的URL:")
if st.button("抓取並提取關鍵詞"):
if url:
title, content = fetch_yahoo_news(url)
st.write("新聞標題:", title)
st.write("新聞內容:", content)
# 將內容轉為DataFrame
data = {'Title': [title], 'Content': [content]}
df = pd.DataFrame(data)
st.write("新聞內容的DataFrame:")
st.write(df)
# 提取關鍵詞
keywords = extract_keywords(content, diversity=diversity)
st.write("關鍵詞提取結果:")
for keyword in keywords:
st.write(f"{keyword[0]}: {keyword[1]:.4f}")
plot_keywords(keywords, "關鍵詞提取結果")
# 使用另一個模型進行關鍵詞提取
kw_model_multilingual = KeyBERT(model='distiluse-base-multilingual-cased-v1')
keywords_multilingual = kw_model_multilingual.extract_keywords(content, vectorizer=vectorizer, use_mmr=True, diversity=diversity)
st.write("多語言模型關鍵詞提取結果:")
for keyword in keywords_multilingual:
st.write(f"{keyword[0]}: {keyword[1]:.4f}")
plot_keywords(keywords_multilingual, "多語言模型關鍵詞提取結果")
# 生成TF-IDF文字雲
plot_wordcloud(content)
# LDA主題模型
num_topics = st.slider("選擇LDA主題數量", 1, 10, 5)
lda_topics = lda_topic_modeling(content, num_topics=num_topics)
st.write("LDA主題模型結果:")
for topic in lda_topics:
st.write(f"主題 {topic[0]}: {topic[1]}")
else:
st.write("請輸入有效的Yahoo新聞URL。")