Spaces:
Build error
Build error
import requests | |
from bs4 import BeautifulSoup | |
import pandas as pd | |
import jieba | |
from keybert import KeyBERT | |
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | |
import streamlit as st | |
import matplotlib.pyplot as plt | |
from matplotlib.font_manager import FontProperties | |
from wordcloud import WordCloud | |
from gensim import corpora, models | |
# 下載字體 | |
def download_font(url, save_path): | |
response = requests.get(url) | |
with open(save_path, 'wb') as f: | |
f.write(response.content) | |
# 字體URL和保存路徑 | |
font_url = 'https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download' | |
font_path = 'TaipeiSansTCBeta-Regular.ttf' | |
# 下載字體 | |
download_font(font_url, font_path) | |
# 設置字體 | |
font_prop = FontProperties(fname=font_path) | |
# 抓取Yahoo新聞標題和內容 | |
def fetch_yahoo_news(url): | |
response = requests.get(url) | |
web_content = response.content | |
soup = BeautifulSoup(web_content, 'html.parser') | |
title = soup.find('h1').text | |
content = soup.find('article').text | |
return title, content | |
# 斷詞函數 | |
def jieba_tokenizer(text): | |
return jieba.lcut(text) | |
# 初始化CountVectorizer並定義KeyBERT模型 | |
vectorizer = CountVectorizer(tokenizer=jieba_tokenizer) | |
kw_model = KeyBERT() | |
# 提取關鍵詞的函數(使用MMR) | |
def extract_keywords(doc, diversity=0.7): | |
keywords = kw_model.extract_keywords(doc, vectorizer=vectorizer, use_mmr=True, diversity=diversity) | |
return keywords | |
# 畫圖函數 | |
def plot_keywords(keywords, title): | |
words = [kw[0] for kw in keywords] | |
scores = [kw[1] for kw in keywords] | |
plt.figure(figsize=(10, 6)) | |
bars = plt.barh(words, scores, color='skyblue', edgecolor='black', linewidth=1.2) | |
plt.xlabel('分數', fontproperties=font_prop, fontsize=14) | |
plt.title(title, fontproperties=font_prop, fontsize=16) | |
plt.gca().invert_yaxis() # 反轉Y軸,使得分數最高的關鍵詞在最上面 | |
plt.xticks(fontproperties=font_prop, fontsize=12) | |
plt.yticks(fontproperties=font_prop, fontsize=12) | |
plt.grid(axis='x', linestyle='--', alpha=0.7) | |
# 添加分數標籤 | |
for bar in bars: | |
plt.gca().text(bar.get_width() + 0.01, bar.get_y() + bar.get_height() / 2, | |
f'{bar.get_width():.4f}', va='center', ha='left', fontsize=12, fontproperties=font_prop) | |
st.pyplot(plt) | |
# 生成TF-IDF文字雲的函數 | |
def plot_wordcloud(text): | |
tfidf_vectorizer = TfidfVectorizer(tokenizer=jieba_tokenizer) | |
tfidf_matrix = tfidf_vectorizer.fit_transform([text]) | |
tfidf_scores = dict(zip(tfidf_vectorizer.get_feature_names_out(), tfidf_matrix.toarray().flatten())) | |
wordcloud = WordCloud(font_path=font_path, background_color='white', max_words=100, width=800, height=400) | |
wordcloud.generate_from_frequencies(tfidf_scores) | |
plt.figure(figsize=(10, 6)) | |
plt.imshow(wordcloud, interpolation='bilinear') | |
plt.axis('off') | |
plt.title('TF-IDF文字雲', fontproperties=font_prop, fontsize=16) | |
st.pyplot(plt) | |
# LDA主題模型函數 | |
def lda_topic_modeling(text, num_topics=5): | |
# 斷詞並創建字典和語料庫 | |
tokens = jieba_tokenizer(text) | |
dictionary = corpora.Dictionary([tokens]) | |
corpus = [dictionary.doc2bow(tokens)] | |
# 生成LDA模型 | |
lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15) | |
# 提取主題 | |
topics = lda_model.print_topics(num_words=5) | |
return topics | |
# 建立Streamlit網頁應用程式 | |
st.title("🤙🤙🤙YAHOO新聞關鍵詞提取工具👂👂") | |
# 設置MMR多樣性參數 | |
diversity = st.slider("選擇MMR多樣性參數", 0.0, 1.0, 0.7) | |
# 抓取Yahoo新聞的URL輸入框 | |
url = st.text_input("請輸入Yahoo新聞的URL:") | |
if st.button("抓取並提取關鍵詞"): | |
if url: | |
title, content = fetch_yahoo_news(url) | |
st.write("新聞標題:", title) | |
st.write("新聞內容:", content) | |
# 將內容轉為DataFrame | |
data = {'Title': [title], 'Content': [content]} | |
df = pd.DataFrame(data) | |
st.write("新聞內容的DataFrame:") | |
st.write(df) | |
# 提取關鍵詞 | |
keywords = extract_keywords(content, diversity=diversity) | |
st.write("關鍵詞提取結果:") | |
for keyword in keywords: | |
st.write(f"{keyword[0]}: {keyword[1]:.4f}") | |
plot_keywords(keywords, "關鍵詞提取結果") | |
# 使用另一個模型進行關鍵詞提取 | |
kw_model_multilingual = KeyBERT(model='distiluse-base-multilingual-cased-v1') | |
keywords_multilingual = kw_model_multilingual.extract_keywords(content, vectorizer=vectorizer, use_mmr=True, diversity=diversity) | |
st.write("多語言模型關鍵詞提取結果:") | |
for keyword in keywords_multilingual: | |
st.write(f"{keyword[0]}: {keyword[1]:.4f}") | |
plot_keywords(keywords_multilingual, "多語言模型關鍵詞提取結果") | |
# 生成TF-IDF文字雲 | |
plot_wordcloud(content) | |
# LDA主題模型 | |
num_topics = st.slider("選擇LDA主題數量", 1, 10, 5) | |
lda_topics = lda_topic_modeling(content, num_topics=num_topics) | |
st.write("LDA主題模型結果:") | |
for topic in lda_topics: | |
st.write(f"主題 {topic[0]}: {topic[1]}") | |
else: | |
st.write("請輸入有效的Yahoo新聞URL。") | |