Spaces:
Running
Running
Robert Castagna
commited on
Commit
·
813fa51
1
Parent(s):
cf4e04f
feb8 meeting update
Browse files- .gitignore +2 -1
- app.py +0 -5
- fin_data.db +0 -0
- pages/1_Fundamentals.py +30 -26
- pages/2_Sentiment_Data_Input.py +53 -36
- pages/__pycache__/scraped_data.cpython-311.pyc +0 -0
- pages/scraped_data.py +0 -185
- requirements.txt +2 -1
- scraped_data.py +61 -0
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
secrets.json
|
| 2 |
edgar-crawler/
|
| 3 |
-
.venv/
|
|
|
|
|
|
| 1 |
secrets.json
|
| 2 |
edgar-crawler/
|
| 3 |
+
.venv/
|
| 4 |
+
.env
|
app.py
CHANGED
|
@@ -35,13 +35,8 @@ conn.close()
|
|
| 35 |
df = pd.DataFrame(rows, columns=column_names)
|
| 36 |
|
| 37 |
# setup pygwalker configuration: https://github.com/Kanaries/pygwalker, https://docs.kanaries.net/pygwalker/use-pygwalker-with-streamlit.en
|
| 38 |
-
#pyg_html = pyg.to_html(df, dark="dark")
|
| 39 |
pyg_html = pyg.walk(df, dark = 'dark', return_html=True)
|
| 40 |
|
| 41 |
components.html(pyg_html, height=1000, scrolling=True)
|
| 42 |
|
| 43 |
-
# show the dataframe just to test
|
| 44 |
-
st.dataframe(df)
|
| 45 |
-
|
| 46 |
-
|
| 47 |
|
|
|
|
| 35 |
df = pd.DataFrame(rows, columns=column_names)
|
| 36 |
|
| 37 |
# setup pygwalker configuration: https://github.com/Kanaries/pygwalker, https://docs.kanaries.net/pygwalker/use-pygwalker-with-streamlit.en
|
|
|
|
| 38 |
pyg_html = pyg.walk(df, dark = 'dark', return_html=True)
|
| 39 |
|
| 40 |
components.html(pyg_html, height=1000, scrolling=True)
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
fin_data.db
CHANGED
|
Binary files a/fin_data.db and b/fin_data.db differ
|
|
|
pages/1_Fundamentals.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from
|
| 2 |
import datetime
|
| 3 |
import pandas as pd
|
| 4 |
import streamlit as st
|
|
@@ -13,9 +13,9 @@ def get_industry(ticker):
|
|
| 13 |
|
| 14 |
def get_company_metrics(ticker):
|
| 15 |
res_basic_fins = get_finnhub_data(f'/stock/metric?symbol={ticker}&metric=all')
|
| 16 |
-
metric_data = res_basic_fins['metric']
|
| 17 |
-
annual_series_data = res_basic_fins['series']['annual']
|
| 18 |
-
quarterly_series_data = res_basic_fins['series']['quarterly']
|
| 19 |
return metric_data, annual_series_data, quarterly_series_data
|
| 20 |
|
| 21 |
|
|
@@ -59,9 +59,9 @@ def get_equity_gains(ticker, period):
|
|
| 59 |
recent_div = sp500.sort_values('Date', ascending=False)
|
| 60 |
first_non_zero_dividend_row = recent_div[recent_div['Dividends'] > 0.0]
|
| 61 |
if len(first_non_zero_dividend_row) == 0:
|
| 62 |
-
return val['5Y_change'], 0
|
| 63 |
else:
|
| 64 |
-
return val['5Y_change'], first_non_zero_dividend_row.iloc[0]['Dividends']
|
| 65 |
|
| 66 |
|
| 67 |
def get_90_day_tbill():
|
|
@@ -90,10 +90,11 @@ symbols = []
|
|
| 90 |
list_of_tickers = get_list_of_tickers()
|
| 91 |
|
| 92 |
with st.form(key="selecting columns"):
|
| 93 |
-
symbols = st.multiselect(label='
|
| 94 |
-
|
|
|
|
| 95 |
|
| 96 |
-
if submit_button and symbols:
|
| 97 |
beta_dfs = []
|
| 98 |
gains_data = {}
|
| 99 |
hash_map = {}
|
|
@@ -105,12 +106,12 @@ with st.form(key="selecting columns"):
|
|
| 105 |
metric_data, annual_series_data, quarterly_series_data = get_company_metrics(ticker)
|
| 106 |
|
| 107 |
# reformat all JSON returns to be flattened dictionaries
|
| 108 |
-
roe_dict = {'roe': annual_series_data['roe'][0]['v']}
|
| 109 |
-
totalDebtToTotalCapital_y_dict = {'totalDebtToTotalCapital_y' : annual_series_data['totalDebtToTotalCapital'][0]['v']}
|
| 110 |
-
totalDebtToEquity_y_dict = {'totalDebtToEquity_y' : annual_series_data['totalDebtToEquity'][0]['v']}
|
| 111 |
-
eps_dict = {'eps' : annual_series_data['eps'][0]['v']}
|
| 112 |
-
totalDebtToTotalCapital_q_dict = {'totalDebtToTotalCapital_q' : quarterly_series_data['totalDebtToTotalCapital'][0]['v']}
|
| 113 |
-
totalDebtToEquity_q_dict = {'totalDebtToEquity_q' : quarterly_series_data['totalDebtToEquity'][0]['v']}
|
| 114 |
|
| 115 |
# merge all dictionary keys per ticker
|
| 116 |
combined_info = basic_info.copy() # Make a copy of the basic info
|
|
@@ -123,26 +124,29 @@ with st.form(key="selecting columns"):
|
|
| 123 |
beta_dfs.append(df_b)
|
| 124 |
|
| 125 |
# equity gains
|
| 126 |
-
_, div = get_equity_gains(ticker=ticker, period=1810)
|
| 127 |
-
gains_data[ticker] = div
|
| 128 |
|
|
|
|
| 129 |
# Now, create a DataFrame from the hash_map
|
| 130 |
df_1 = pd.DataFrame.from_dict(hash_map, orient='index')[['finnhubIndustry','eps','roe','dividendGrowthRate5Y','epsGrowth5Y','payoutRatioAnnual','payoutRatioTTM','roeTTM','totalDebtToEquity_y','totalDebtToEquity_q', 'totalDebtToTotalCapital_y','totalDebtToTotalCapital_q']]
|
| 131 |
# Create beta df
|
| 132 |
beta_df = pd.concat(beta_dfs)
|
| 133 |
-
df_2 = pd.DataFrame(
|
| 134 |
-
|
| 135 |
df_apis = df_1.join(beta_df)
|
| 136 |
df_final = df_apis.join(df_2)
|
| 137 |
|
| 138 |
# calculate additional columns
|
| 139 |
-
df_final['5Y_SP500_growth'], _ = get_equity_gains(ticker= '^GSPC', period=1810)
|
| 140 |
-
|
| 141 |
df_final['90_day_tbill'] = 4.06
|
| 142 |
-
|
|
|
|
| 143 |
df_final['CAPM'] = df_final['90_day_tbill']/100 + df_final['Beta']*(df_final['5Y_SP500_growth'] - df_final['90_day_tbill']/100)
|
| 144 |
-
|
| 145 |
-
df_final
|
| 146 |
-
|
| 147 |
st.write(df_final)
|
| 148 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
from scraped_data import get_alpha_vantage_data, get_finnhub_data
|
| 2 |
import datetime
|
| 3 |
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
| 13 |
|
| 14 |
def get_company_metrics(ticker):
|
| 15 |
res_basic_fins = get_finnhub_data(f'/stock/metric?symbol={ticker}&metric=all')
|
| 16 |
+
metric_data = res_basic_fins['metric'] if 'metric' in res_basic_fins else 'N/A'
|
| 17 |
+
annual_series_data = res_basic_fins['series']['annual'] if ('series' in res_basic_fins and 'annual' in res_basic_fins['series']) else 'N/A'
|
| 18 |
+
quarterly_series_data = res_basic_fins['series']['quarterly'] if ('series' in res_basic_fins and 'quarterly' in res_basic_fins['series']) else 'N/A'
|
| 19 |
return metric_data, annual_series_data, quarterly_series_data
|
| 20 |
|
| 21 |
|
|
|
|
| 59 |
recent_div = sp500.sort_values('Date', ascending=False)
|
| 60 |
first_non_zero_dividend_row = recent_div[recent_div['Dividends'] > 0.0]
|
| 61 |
if len(first_non_zero_dividend_row) == 0:
|
| 62 |
+
return val['5Y_change'], 0, recent_div['Close'].iloc[0]
|
| 63 |
else:
|
| 64 |
+
return val['5Y_change'], first_non_zero_dividend_row.iloc[0]['Dividends'], recent_div['Close'].iloc[0]
|
| 65 |
|
| 66 |
|
| 67 |
def get_90_day_tbill():
|
|
|
|
| 90 |
list_of_tickers = get_list_of_tickers()
|
| 91 |
|
| 92 |
with st.form(key="selecting columns"):
|
| 93 |
+
symbols = st.multiselect(label='Enter Tickers Here. Cannot check metrics for Funds.', options=list_of_tickers, placeholder='MSFT, AAPL, ...')
|
| 94 |
+
strategy_selection = st.radio("Select Strategy", ('Value', 'Growth'), horizontal=True)
|
| 95 |
+
submit_button = st.form_submit_button(label='Compute Metrics')
|
| 96 |
|
| 97 |
+
if submit_button and symbols and strategy_selection == 'Value':
|
| 98 |
beta_dfs = []
|
| 99 |
gains_data = {}
|
| 100 |
hash_map = {}
|
|
|
|
| 106 |
metric_data, annual_series_data, quarterly_series_data = get_company_metrics(ticker)
|
| 107 |
|
| 108 |
# reformat all JSON returns to be flattened dictionaries
|
| 109 |
+
roe_dict = {'roe': annual_series_data['roe'][0]['v'] if annual_series_data != 'N/A' else 'N/A'}
|
| 110 |
+
totalDebtToTotalCapital_y_dict = {'totalDebtToTotalCapital_y' : annual_series_data['totalDebtToTotalCapital'][0]['v'] if annual_series_data != 'N/A' else 'N/A'}
|
| 111 |
+
totalDebtToEquity_y_dict = {'totalDebtToEquity_y' : annual_series_data['totalDebtToEquity'][0]['v'] if annual_series_data != 'N/A' else 'N/A'}
|
| 112 |
+
eps_dict = {'eps' : annual_series_data['eps'][0]['v'] if annual_series_data != 'N/A' else 'N/A'}
|
| 113 |
+
totalDebtToTotalCapital_q_dict = {'totalDebtToTotalCapital_q' : quarterly_series_data['totalDebtToTotalCapital'][0]['v'] if quarterly_series_data != 'N/A' else 'N/A'}
|
| 114 |
+
totalDebtToEquity_q_dict = {'totalDebtToEquity_q' : quarterly_series_data['totalDebtToEquity'][0]['v'] if quarterly_series_data != 'N/A' else 'N/A'}
|
| 115 |
|
| 116 |
# merge all dictionary keys per ticker
|
| 117 |
combined_info = basic_info.copy() # Make a copy of the basic info
|
|
|
|
| 124 |
beta_dfs.append(df_b)
|
| 125 |
|
| 126 |
# equity gains
|
| 127 |
+
_, div, close_price = get_equity_gains(ticker=ticker, period=1810)
|
| 128 |
+
gains_data[ticker] = [div, close_price]
|
| 129 |
|
| 130 |
+
|
| 131 |
# Now, create a DataFrame from the hash_map
|
| 132 |
df_1 = pd.DataFrame.from_dict(hash_map, orient='index')[['finnhubIndustry','eps','roe','dividendGrowthRate5Y','epsGrowth5Y','payoutRatioAnnual','payoutRatioTTM','roeTTM','totalDebtToEquity_y','totalDebtToEquity_q', 'totalDebtToTotalCapital_y','totalDebtToTotalCapital_q']]
|
| 133 |
# Create beta df
|
| 134 |
beta_df = pd.concat(beta_dfs)
|
| 135 |
+
df_2 = pd.DataFrame.from_dict(gains_data, orient='index', columns=['Recent Dividend','Price'])
|
| 136 |
+
|
| 137 |
df_apis = df_1.join(beta_df)
|
| 138 |
df_final = df_apis.join(df_2)
|
| 139 |
|
| 140 |
# calculate additional columns
|
| 141 |
+
df_final['5Y_SP500_growth'], _, _ = get_equity_gains(ticker= '^GSPC', period=1810)
|
|
|
|
| 142 |
df_final['90_day_tbill'] = 4.06
|
| 143 |
+
df_final['P/E Ratio'] = df_final['Price'] / df_final['eps']
|
| 144 |
+
df_final['dividendGrowthRate5Y'] = df_final['dividendGrowthRate5Y']/100
|
| 145 |
df_final['CAPM'] = df_final['90_day_tbill']/100 + df_final['Beta']*(df_final['5Y_SP500_growth'] - df_final['90_day_tbill']/100)
|
| 146 |
+
df_final['DDM'] = (df_final['Recent Dividend'] * (1+df_final['dividendGrowthRate5Y'])) / (df_final['CAPM'] - df_final['dividendGrowthRate5Y'])
|
| 147 |
+
df_final = df_final[['finnhubIndustry','Price','eps','roe','P/E Ratio','epsGrowth5Y','payoutRatioAnnual','payoutRatioTTM','roeTTM','totalDebtToEquity_y','totalDebtToEquity_q', 'totalDebtToTotalCapital_y','totalDebtToTotalCapital_q','Beta','Recent Dividend','90_day_tbill','5Y_SP500_growth','dividendGrowthRate5Y','CAPM','DDM']]
|
| 148 |
+
df_final.rename({'finnhubIndustry':'Industry', 'eps':'EPS', 'roe':'ROE'}, inplace=True, axis=1)
|
| 149 |
st.write(df_final)
|
| 150 |
+
|
| 151 |
+
if submit_button and symbols and strategy_selection == 'Growth':
|
| 152 |
+
st.write("Not built yet...")
|
pages/2_Sentiment_Data_Input.py
CHANGED
|
@@ -7,7 +7,8 @@ import sqlite3
|
|
| 7 |
import pandas as pd
|
| 8 |
import streamlit as st
|
| 9 |
import os
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
# API DOC: https://finnhub.io/docs/api/introduction
|
| 13 |
|
|
@@ -17,11 +18,25 @@ def get_finnhub_data(example: str) -> json:
|
|
| 17 |
:param1 example: '/company-news?symbol=AAPL&from=2023-08-15&to=2023-08-20'
|
| 18 |
"""
|
| 19 |
base_url = 'https://finnhub.io/api/v1//'
|
| 20 |
-
|
| 21 |
token = f"&token={os.environ['finnhub_token']}"
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def sentiment_analysis(headline:str) -> str:
|
| 27 |
"""
|
|
@@ -30,10 +45,10 @@ def sentiment_analysis(headline:str) -> str:
|
|
| 30 |
|
| 31 |
:param1 headline: Text string: 'Apple is the best company in the world'
|
| 32 |
"""
|
| 33 |
-
nlp = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
| 34 |
return nlp(headline)
|
| 35 |
|
| 36 |
|
|
|
|
| 37 |
# --------------------------------- get news articles for a company --------------------------------- #
|
| 38 |
conn = sqlite3.connect('fin_data.db')
|
| 39 |
c = conn.cursor()
|
|
@@ -51,51 +66,53 @@ c.execute("""CREATE TABLE IF NOT EXISTS company_news (
|
|
| 51 |
)""")
|
| 52 |
|
| 53 |
|
| 54 |
-
ticker = st.text_input(label='Entering ticker will add
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
c.execute('SELECT DISTINCT(ticker) FROM company_news')
|
| 59 |
distinct_tickers = c.fetchall()
|
| 60 |
distinct_ticker_symbols = [ticker[0] for ticker in distinct_tickers]
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
if
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
VALUES (?, ?, ?, ?, ?, ?)
|
| 80 |
-
"""
|
| 81 |
-
data = (ticker, item['category'], item['headline'], dt_object, sentiment_label, sentiment_score)
|
| 82 |
-
|
| 83 |
-
#Execute the query with the data
|
| 84 |
-
c.execute(query, data)
|
| 85 |
|
| 86 |
c.execute("""
|
| 87 |
SELECT * FROM company_news WHERE ticker = ?
|
| 88 |
""", (ticker,))
|
| 89 |
# Fetch all results
|
| 90 |
rows = c.fetchall()
|
| 91 |
-
|
| 92 |
-
# Extract column names from cursor description
|
| 93 |
-
column_names = [description[0] for description in c.description]
|
| 94 |
-
|
| 95 |
# Create a DataFrame
|
| 96 |
-
df = pd.DataFrame(rows, columns=
|
| 97 |
|
| 98 |
-
|
| 99 |
st.write(df)
|
| 100 |
|
| 101 |
|
|
|
|
| 7 |
import pandas as pd
|
| 8 |
import streamlit as st
|
| 9 |
import os
|
| 10 |
+
import streamlit as st
|
| 11 |
+
from requests.exceptions import HTTPError, RequestException
|
| 12 |
|
| 13 |
# API DOC: https://finnhub.io/docs/api/introduction
|
| 14 |
|
|
|
|
| 18 |
:param1 example: '/company-news?symbol=AAPL&from=2023-08-15&to=2023-08-20'
|
| 19 |
"""
|
| 20 |
base_url = 'https://finnhub.io/api/v1//'
|
|
|
|
| 21 |
token = f"&token={os.environ['finnhub_token']}"
|
| 22 |
|
| 23 |
+
try:
|
| 24 |
+
request = requests.get(f"{base_url}{example}{token}")
|
| 25 |
+
request.raise_for_status() # This will raise an HTTPError if the response was an error
|
| 26 |
+
return request.json()
|
| 27 |
+
except HTTPError as http_err:
|
| 28 |
+
st.write(f"HTTP error occurred: {http_err}") # Python 3.6+
|
| 29 |
+
# Consider logging the error or handling it further based on your needs
|
| 30 |
+
except RequestException as err:
|
| 31 |
+
st.write(f"Other error occurred: {err}") # Python 3.6+
|
| 32 |
+
# Handle other types of exceptions (e.g., network issues)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
st.write(f"Unexpected error: {e}")
|
| 35 |
+
# Catch-all for any other exceptions, which is useful for debugging
|
| 36 |
+
|
| 37 |
+
return {} # Return
|
| 38 |
+
|
| 39 |
+
nlp = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
| 40 |
|
| 41 |
def sentiment_analysis(headline:str) -> str:
|
| 42 |
"""
|
|
|
|
| 45 |
|
| 46 |
:param1 headline: Text string: 'Apple is the best company in the world'
|
| 47 |
"""
|
|
|
|
| 48 |
return nlp(headline)
|
| 49 |
|
| 50 |
|
| 51 |
+
|
| 52 |
# --------------------------------- get news articles for a company --------------------------------- #
|
| 53 |
conn = sqlite3.connect('fin_data.db')
|
| 54 |
c = conn.cursor()
|
|
|
|
| 66 |
)""")
|
| 67 |
|
| 68 |
|
| 69 |
+
ticker = st.text_input(label='Entering ticker will add last 5 days of news sentiment data to database.')
|
| 70 |
|
| 71 |
+
start_date_str = (datetime.datetime.today() - datetime.timedelta(days=5)).strftime('%Y-%m-%d')
|
| 72 |
+
end_date_str = datetime.datetime.today().strftime('%Y-%m-%d')
|
| 73 |
+
dates = set(pd.date_range(start=start_date_str, end=end_date_str).strftime('%Y-%m-%d'))
|
| 74 |
+
|
| 75 |
+
if st.button('Load') and ticker:
|
| 76 |
|
| 77 |
+
c.execute('SELECT DISTINCT(ticker), date_stamp FROM company_news where ticker = ?', (ticker,))
|
| 78 |
distinct_tickers = c.fetchall()
|
| 79 |
distinct_ticker_symbols = [ticker[0] for ticker in distinct_tickers]
|
| 80 |
+
existing_dates = set([ticker[1] for ticker in distinct_tickers])
|
| 81 |
+
unique_dates = dates - existing_dates
|
| 82 |
|
| 83 |
+
if unique_dates:
|
| 84 |
+
for date in unique_dates:
|
| 85 |
+
try:
|
| 86 |
+
res_news = get_finnhub_data(f"/company-news?symbol={ticker}&from={date}&to={date}")
|
| 87 |
+
except:
|
| 88 |
+
st.error('Invalid Ticker.')
|
| 89 |
+
st.write(f"Proessing {len(res_news)} headlines for ", ticker,' on ', date)
|
| 90 |
+
|
| 91 |
+
for item in res_news:
|
| 92 |
+
dt_object = datetime.datetime.fromtimestamp(item['datetime']).strftime("%Y-%m-%d")
|
| 93 |
+
sentiment = sentiment_analysis(item['headline'])
|
| 94 |
+
sentiment_label = sentiment[0]['label']
|
| 95 |
+
sentiment_score = sentiment[0]['score']
|
| 96 |
+
#st.write(sentiment_label, dt_object)
|
| 97 |
+
|
| 98 |
+
query = """
|
| 99 |
+
INSERT INTO company_news (ticker, category, headline, date_stamp, sentiment_label, sentiment_score)
|
| 100 |
+
VALUES (?, ?, ?, ?, ?, ?)
|
| 101 |
+
"""
|
| 102 |
+
data = (ticker, item['category'], item['headline'], dt_object, sentiment_label, sentiment_score)
|
| 103 |
|
| 104 |
+
#Execute the query with the data
|
| 105 |
+
c.execute(query, data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
c.execute("""
|
| 108 |
SELECT * FROM company_news WHERE ticker = ?
|
| 109 |
""", (ticker,))
|
| 110 |
# Fetch all results
|
| 111 |
rows = c.fetchall()
|
| 112 |
+
|
|
|
|
|
|
|
|
|
|
| 113 |
# Create a DataFrame
|
| 114 |
+
df = pd.DataFrame(rows, columns=[description[0] for description in c.description])
|
| 115 |
|
|
|
|
| 116 |
st.write(df)
|
| 117 |
|
| 118 |
|
pages/__pycache__/scraped_data.cpython-311.pyc
ADDED
|
Binary file (8.83 kB). View file
|
|
|
pages/scraped_data.py
DELETED
|
@@ -1,185 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import requests
|
| 3 |
-
import datetime
|
| 4 |
-
import pandas as pd
|
| 5 |
-
import streamlit as st
|
| 6 |
-
import os
|
| 7 |
-
import re
|
| 8 |
-
import yfinance as yf
|
| 9 |
-
import plotly.graph_objects as go
|
| 10 |
-
from datetime import timedelta
|
| 11 |
-
|
| 12 |
-
def get_finnhub_data(example: str) -> json:
|
| 13 |
-
"""
|
| 14 |
-
Pass in the "example" string from the API documentation. It changes for every endpoint.
|
| 15 |
-
|
| 16 |
-
:param1 example: '/company-news?symbol=AAPL&from=2023-08-15&to=2023-08-20'
|
| 17 |
-
"""
|
| 18 |
-
base_url = 'https://finnhub.io/api/v1//'
|
| 19 |
-
|
| 20 |
-
token = f"&token={os.environ['finnhub_token']}"
|
| 21 |
-
|
| 22 |
-
request = requests.get(f"{base_url}{example}{token}")
|
| 23 |
-
return request.json()
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def get_alpha_vantage_data(example: str) -> json:
|
| 27 |
-
"""
|
| 28 |
-
Pass in the "function" string from the API documentation. It changes for every endpoint.
|
| 29 |
-
|
| 30 |
-
:param1 example: ''
|
| 31 |
-
"""
|
| 32 |
-
base_url = 'https://www.alphavantage.co/query?'
|
| 33 |
-
token = f"&apikey={os.environ['alpha_api_key']}"
|
| 34 |
-
|
| 35 |
-
request = requests.get(f"{base_url}{example}{token}")
|
| 36 |
-
return request.json()
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
# --------------------------------- list of all tickers ---------------------------------#
|
| 40 |
-
# comp_info = get_finnhub_data('/stock/symbol?exchange=US')
|
| 41 |
-
# list_of_tickers = []
|
| 42 |
-
# for i in range(len(comp_info)-1):
|
| 43 |
-
# for key in comp_info[i].keys():
|
| 44 |
-
# if key == 'symbol':
|
| 45 |
-
# list_of_tickers.append(comp_info[i]['symbol'])
|
| 46 |
-
ticker = []
|
| 47 |
-
ticker = st.text_input('type a ticker')
|
| 48 |
-
|
| 49 |
-
if ticker:
|
| 50 |
-
comp_info = get_finnhub_data(f'/stock/profile2?symbol={ticker}')
|
| 51 |
-
df_industry = pd.DataFrame.from_dict(comp_info, orient='index').T[['finnhubIndustry','name','ticker']]
|
| 52 |
-
st.write(df_industry)
|
| 53 |
-
|
| 54 |
-
# --------------------------------- finnhub API --------------------------------- #
|
| 55 |
-
# get basic financials
|
| 56 |
-
#
|
| 57 |
-
|
| 58 |
-
res_basic_fins = get_finnhub_data(f'/stock/metric?symbol={ticker}&metric=all')
|
| 59 |
-
metric_data = res_basic_fins['metric']
|
| 60 |
-
annual_series_data = res_basic_fins['series']['annual']
|
| 61 |
-
quarterly_series_data = res_basic_fins['series']['quarterly']
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
# endpoint 1
|
| 65 |
-
df_metric_data = pd.DataFrame.from_dict(metric_data, orient='index', columns=['Value'])
|
| 66 |
-
df_metric_data = df_metric_data.transpose()
|
| 67 |
-
df_metric_data = df_metric_data[['dividendGrowthRate5Y','epsGrowth5Y','payoutRatioAnnual','payoutRatioTTM','roeTTM']]
|
| 68 |
-
df_metric_data['symbol'] = res_basic_fins['symbol']
|
| 69 |
-
st.write(df_metric_data)
|
| 70 |
-
|
| 71 |
-
# endpoint 2
|
| 72 |
-
df_roe = pd.DataFrame(annual_series_data['roe']).rename(columns={'v': 'bookValue'})
|
| 73 |
-
df_totalDebtToTotalCapital = pd.DataFrame(annual_series_data['totalDebtToTotalCapital']).rename(columns={'v': 'annual_totalDebtToTotalCapital'})
|
| 74 |
-
df_totalDebtToEquity = pd.DataFrame(annual_series_data['totalDebtToEquity']).rename(columns={'v': 'annual_totalDebtToEquity'})
|
| 75 |
-
df_eps = pd.DataFrame(annual_series_data['eps']).rename(columns={'v': 'eps'})
|
| 76 |
-
|
| 77 |
-
# Merge the DataFrames on 'period'
|
| 78 |
-
dfs = [df_roe, df_totalDebtToTotalCapital, df_totalDebtToEquity, df_eps]
|
| 79 |
-
df_merged = dfs[0]
|
| 80 |
-
for df in dfs[1:]:
|
| 81 |
-
df_merged = df_merged.merge(df, on='period', how='outer')
|
| 82 |
-
|
| 83 |
-
df_annual_series_data = df_merged
|
| 84 |
-
df_annual_series_data['symbol'] = res_basic_fins['symbol']
|
| 85 |
-
|
| 86 |
-
st.write(df_annual_series_data)
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
# endpoint 3
|
| 90 |
-
df_totalDebtToTotalCapital = pd.DataFrame(quarterly_series_data['totalDebtToTotalCapital']).rename(columns={'v': 'quarterly_totalDebtToTotalCapital'})
|
| 91 |
-
df_totalDebtToEquity = pd.DataFrame(quarterly_series_data['totalDebtToEquity']).rename(columns={'v': 'quarterly_totalDebtToEquity'})
|
| 92 |
-
|
| 93 |
-
# Merge the DataFrames on 'period'
|
| 94 |
-
dfs = [df_totalDebtToTotalCapital, df_totalDebtToEquity]
|
| 95 |
-
df_merged = dfs[0]
|
| 96 |
-
for df in dfs[1:]:
|
| 97 |
-
df_merged = df_merged.merge(df, on='period', how='outer')
|
| 98 |
-
|
| 99 |
-
df_quarterly_series_data = df_merged
|
| 100 |
-
df_quarterly_series_data['symbol'] = res_basic_fins['symbol']
|
| 101 |
-
|
| 102 |
-
st.write(df_quarterly_series_data)
|
| 103 |
-
|
| 104 |
-
# ------------------------ alphavantage API --------------------------------- #
|
| 105 |
-
# dividend and t-bill data
|
| 106 |
-
#
|
| 107 |
-
|
| 108 |
-
# endpoint 1
|
| 109 |
-
q = f'function=TIME_SERIES_MONTHLY_ADJUSTED&symbol={ticker}&interval=5min'
|
| 110 |
-
dividend_data = get_alpha_vantage_data(q)
|
| 111 |
-
|
| 112 |
-
data = []
|
| 113 |
-
for date, val in dividend_data['Monthly Adjusted Time Series'].items():
|
| 114 |
-
# key is the date, val contains another dictionary where the 6th element is a dividend value
|
| 115 |
-
for label, dividend in val.items():
|
| 116 |
-
if re.search('dividend', label) and float(dividend) > 0.0000:
|
| 117 |
-
data.append((date, dividend))
|
| 118 |
-
df_dividends = pd.DataFrame(data, columns = [['date','monthly_dividend']])
|
| 119 |
-
st.write(df_dividends)
|
| 120 |
-
|
| 121 |
-
# endpoint 2
|
| 122 |
-
q = 'function=TREASURY_YIELD&'
|
| 123 |
-
|
| 124 |
-
t_bill_data = get_alpha_vantage_data(q)
|
| 125 |
-
df_t_bills = pd.DataFrame(t_bill_data['data']).rename(columns={'date':'Date', 'value':'90_day_t_bill'})
|
| 126 |
-
st.write(df_t_bills)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# ------------------------ yfinance API --------------------------------- #
|
| 130 |
-
# index and ticker price data (beta calculations)
|
| 131 |
-
#
|
| 132 |
-
|
| 133 |
-
sp = yf.Ticker("^GSPC")
|
| 134 |
-
sp_hist = sp.history(period="1y")['Close']
|
| 135 |
-
|
| 136 |
-
sp = yf.Ticker(f'{ticker}')
|
| 137 |
-
ticker_hist = sp.history(period="1y")['Close']
|
| 138 |
-
|
| 139 |
-
sp500 = sp_hist.reset_index().rename(columns={'Close':'sp500_Close'})
|
| 140 |
-
sp500['sp500_variance'] = sp500['sp500_Close'].var()
|
| 141 |
-
|
| 142 |
-
merged_df = sp500.merge(ticker_hist, how='outer', on='Date')
|
| 143 |
-
|
| 144 |
-
beta = merged_df.cov().loc['sp500_Close']['Close'] / sp500['sp500_variance'].max()
|
| 145 |
-
max_date = merged_df['Date'].max()
|
| 146 |
-
|
| 147 |
-
d = {'Date': max_date, 'Beta': beta, 'Symbol': ticker}
|
| 148 |
-
df_beta = pd.DataFrame(d, index = [0])
|
| 149 |
-
st.write(df_beta)
|
| 150 |
-
|
| 151 |
-
# getting 5 years of history for pct change calculation
|
| 152 |
-
sp = yf.Ticker("^GSPC")
|
| 153 |
-
sp_hist = sp.history(period="5y")['Close']
|
| 154 |
-
sp500 = sp_hist.reset_index().rename(columns={'Close':'sp500_Close'})
|
| 155 |
-
sp500['Date'] = pd.to_datetime(sp500["Date"].dt.strftime('%Y-%m-%d'))
|
| 156 |
-
|
| 157 |
-
todays_close = sp500.sort_values('Date', ascending=False).iloc[0]
|
| 158 |
-
|
| 159 |
-
sp500_new_index = sp500.set_index('Date')
|
| 160 |
-
|
| 161 |
-
# 1M, 3M, 1Y, 2Y, 3Y & 5Y
|
| 162 |
-
days = [30, 90, 365, 730, 1095, 1810]
|
| 163 |
-
|
| 164 |
-
val = {}
|
| 165 |
-
|
| 166 |
-
for day in days:
|
| 167 |
-
if todays_close[0] - timedelta(days=day) in sp500_new_index.index:
|
| 168 |
-
delta = todays_close['sp500_Close'] - sp500_new_index.loc[todays_close[0] - timedelta(days=day)]['sp500_Close']
|
| 169 |
-
val[f'{day}_day_pct_change'] = (delta / sp500_new_index.loc[todays_close[0] - timedelta(days=day)]['sp500_Close'] *100)
|
| 170 |
-
else:
|
| 171 |
-
val[f'{day}_day_pct_change'] = 'weekend'
|
| 172 |
-
|
| 173 |
-
df_sp500_ytd_change = pd.DataFrame(val, index=['Delta'])
|
| 174 |
-
st.write(df_sp500_ytd_change)
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
# plotting sp500 price over time
|
| 178 |
-
price_chart = go.Scatter(
|
| 179 |
-
x=merged_df.Date,
|
| 180 |
-
y=merged_df.sp500_Close,
|
| 181 |
-
name = '1y price history'
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
fig_candle = go.Figure(price_chart)
|
| 185 |
-
st.plotly_chart(fig_candle, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -20,4 +20,5 @@ pygwalker==0.3.9
|
|
| 20 |
streamlit==1.22.0
|
| 21 |
regex
|
| 22 |
yfinance==0.2.28
|
| 23 |
-
torch
|
|
|
|
|
|
| 20 |
streamlit==1.22.0
|
| 21 |
regex
|
| 22 |
yfinance==0.2.28
|
| 23 |
+
torch
|
| 24 |
+
python-dotenv
|
scraped_data.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import requests
|
| 3 |
+
import datetime
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import os
|
| 7 |
+
import re
|
| 8 |
+
import yfinance as yf
|
| 9 |
+
import plotly.graph_objects as go
|
| 10 |
+
from datetime import timedelta
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
|
| 13 |
+
load_dotenv()
|
| 14 |
+
|
| 15 |
+
def get_finnhub_data(example: str) -> json:
|
| 16 |
+
"""
|
| 17 |
+
Pass in the "example" string from the API documentation. It changes for every endpoint.
|
| 18 |
+
|
| 19 |
+
:param1 example: '/company-news?symbol=AAPL&from=2023-08-15&to=2023-08-20'
|
| 20 |
+
"""
|
| 21 |
+
base_url = 'https://finnhub.io/api/v1//'
|
| 22 |
+
|
| 23 |
+
token = f"&token={os.environ['finnhub_token']}"
|
| 24 |
+
|
| 25 |
+
request = requests.get(f"{base_url}{example}{token}")
|
| 26 |
+
return request.json()
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_alpha_vantage_data(example: str) -> json:
|
| 30 |
+
"""
|
| 31 |
+
Pass in the "function" string from the API documentation. It changes for every endpoint.
|
| 32 |
+
|
| 33 |
+
:param1 example: ''
|
| 34 |
+
"""
|
| 35 |
+
base_url = 'https://www.alphavantage.co/query?'
|
| 36 |
+
token = f"&apikey={os.environ['alpha_api_key']}"
|
| 37 |
+
|
| 38 |
+
request = requests.get(f"{base_url}{example}{token}")
|
| 39 |
+
return request.json()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
sp = yf.Ticker("^GSPC")
|
| 43 |
+
sp_hist = sp.history(period="1y")['Close']
|
| 44 |
+
|
| 45 |
+
sp500 = sp_hist.reset_index().rename(columns={'Close':'sp500_Close'})
|
| 46 |
+
sp500['sp500_variance'] = sp500['sp500_Close'].var()
|
| 47 |
+
|
| 48 |
+
beta = sp500.cov().loc['sp500_Close']['Close'] / sp500['sp500_variance'].max()
|
| 49 |
+
max_date = sp500['Date'].max()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# plotting sp500 price over time
|
| 54 |
+
price_chart = go.Scatter(
|
| 55 |
+
x=sp500.Date,
|
| 56 |
+
y=sp500.sp500_Close,
|
| 57 |
+
name = '1y price history'
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
fig_candle = go.Figure(price_chart)
|
| 61 |
+
st.plotly_chart(fig_candle, use_container_width=True)
|