Spaces:
Runtime error
Runtime error
guess mode
Browse files
app.py
CHANGED
|
@@ -141,7 +141,7 @@ def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_re
|
|
| 141 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 142 |
"task": task_dic}
|
| 143 |
|
| 144 |
-
un_cond = {"c_concat":
|
| 145 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 146 |
shape = (4, H // 8, W // 8)
|
| 147 |
|
|
@@ -200,7 +200,7 @@ def process_hed(input_image, prompt, a_prompt, n_prompt, num_samples, image_reso
|
|
| 200 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 201 |
"task": task_dic}
|
| 202 |
|
| 203 |
-
un_cond = {"c_concat":
|
| 204 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 205 |
shape = (4, H // 8, W // 8)
|
| 206 |
|
|
@@ -257,7 +257,7 @@ def process_depth(input_image, prompt, a_prompt, n_prompt, num_samples, image_re
|
|
| 257 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 258 |
"task": task_dic}
|
| 259 |
|
| 260 |
-
un_cond = {"c_concat":
|
| 261 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 262 |
shape = (4, H // 8, W // 8)
|
| 263 |
|
|
@@ -316,7 +316,7 @@ def process_normal(input_image, prompt, a_prompt, n_prompt, num_samples, image_r
|
|
| 316 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 317 |
"task": task_dic}
|
| 318 |
|
| 319 |
-
un_cond = {"c_concat":
|
| 320 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 321 |
shape = (4, H // 8, W // 8)
|
| 322 |
|
|
@@ -374,7 +374,7 @@ def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_res
|
|
| 374 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 375 |
"task": task_dic}
|
| 376 |
|
| 377 |
-
un_cond = {"c_concat":
|
| 378 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 379 |
shape = (4, H // 8, W // 8)
|
| 380 |
|
|
@@ -432,7 +432,7 @@ def process_seg(input_image, prompt, a_prompt, n_prompt, num_samples, image_reso
|
|
| 432 |
cond = {"c_concat": [control],
|
| 433 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 434 |
"task": task_dic}
|
| 435 |
-
un_cond = {"c_concat":
|
| 436 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 437 |
shape = (4, H // 8, W // 8)
|
| 438 |
|
|
@@ -605,7 +605,7 @@ def process_bbox(input_image, prompt, a_prompt, n_prompt, num_samples, image_res
|
|
| 605 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 606 |
"task": task_dic}
|
| 607 |
|
| 608 |
-
un_cond = {"c_concat":
|
| 609 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 610 |
shape = (4, H // 8, W // 8)
|
| 611 |
|
|
@@ -664,7 +664,7 @@ def process_outpainting(input_image, prompt, a_prompt, n_prompt, num_samples, im
|
|
| 664 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 665 |
"task": task_dic}
|
| 666 |
|
| 667 |
-
un_cond = {"c_concat":
|
| 668 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 669 |
shape = (4, H // 8, W // 8)
|
| 670 |
|
|
@@ -743,7 +743,7 @@ def process_sketch(input_image, prompt, a_prompt, n_prompt, num_samples, image_r
|
|
| 743 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 744 |
"task": task_dic}
|
| 745 |
|
| 746 |
-
un_cond = {"c_concat":
|
| 747 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 748 |
shape = (4, H // 8, W // 8)
|
| 749 |
|
|
@@ -803,7 +803,7 @@ def process_colorization(input_image, prompt, a_prompt, n_prompt, num_samples, i
|
|
| 803 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 804 |
"task": task_dic}
|
| 805 |
|
| 806 |
-
un_cond = {"c_concat":
|
| 807 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 808 |
shape = (4, H // 8, W // 8)
|
| 809 |
|
|
@@ -861,7 +861,7 @@ def process_deblur(input_image, prompt, a_prompt, n_prompt, num_samples, image_r
|
|
| 861 |
cond = {"c_concat": [control],
|
| 862 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 863 |
"task": task_dic}
|
| 864 |
-
un_cond = {"c_concat":
|
| 865 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 866 |
shape = (4, H // 8, W // 8)
|
| 867 |
|
|
@@ -918,7 +918,7 @@ def process_inpainting(input_image, prompt, a_prompt, n_prompt, num_samples, ima
|
|
| 918 |
cond = {"c_concat": [control],
|
| 919 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 920 |
"task": task_dic}
|
| 921 |
-
un_cond = {"c_concat":
|
| 922 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 923 |
shape = (4, H // 8, W // 8)
|
| 924 |
|
|
@@ -1310,7 +1310,7 @@ with demo:
|
|
| 1310 |
strength, scale, seed, eta, condition_mode]
|
| 1311 |
run_button.click(fn=process_colorization, inputs=ips, outputs=[result_gallery])
|
| 1312 |
|
| 1313 |
-
with gr.TabItem("
|
| 1314 |
with gr.Row():
|
| 1315 |
gr.Markdown("## UniControl Stable Diffusion with Image Deblurring")
|
| 1316 |
with gr.Row():
|
|
|
|
| 141 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 142 |
"task": task_dic}
|
| 143 |
|
| 144 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 145 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 146 |
shape = (4, H // 8, W // 8)
|
| 147 |
|
|
|
|
| 200 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 201 |
"task": task_dic}
|
| 202 |
|
| 203 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 204 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 205 |
shape = (4, H // 8, W // 8)
|
| 206 |
|
|
|
|
| 257 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 258 |
"task": task_dic}
|
| 259 |
|
| 260 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 261 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 262 |
shape = (4, H // 8, W // 8)
|
| 263 |
|
|
|
|
| 316 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 317 |
"task": task_dic}
|
| 318 |
|
| 319 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 320 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 321 |
shape = (4, H // 8, W // 8)
|
| 322 |
|
|
|
|
| 374 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 375 |
"task": task_dic}
|
| 376 |
|
| 377 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 378 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 379 |
shape = (4, H // 8, W // 8)
|
| 380 |
|
|
|
|
| 432 |
cond = {"c_concat": [control],
|
| 433 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 434 |
"task": task_dic}
|
| 435 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 436 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 437 |
shape = (4, H // 8, W // 8)
|
| 438 |
|
|
|
|
| 605 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 606 |
"task": task_dic}
|
| 607 |
|
| 608 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 609 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 610 |
shape = (4, H // 8, W // 8)
|
| 611 |
|
|
|
|
| 664 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 665 |
"task": task_dic}
|
| 666 |
|
| 667 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 668 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 669 |
shape = (4, H // 8, W // 8)
|
| 670 |
|
|
|
|
| 743 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 744 |
"task": task_dic}
|
| 745 |
|
| 746 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 747 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 748 |
shape = (4, H // 8, W // 8)
|
| 749 |
|
|
|
|
| 803 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 804 |
"task": task_dic}
|
| 805 |
|
| 806 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 807 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 808 |
shape = (4, H // 8, W // 8)
|
| 809 |
|
|
|
|
| 861 |
cond = {"c_concat": [control],
|
| 862 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 863 |
"task": task_dic}
|
| 864 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 865 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 866 |
shape = (4, H // 8, W // 8)
|
| 867 |
|
|
|
|
| 918 |
cond = {"c_concat": [control],
|
| 919 |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 920 |
"task": task_dic}
|
| 921 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 922 |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 923 |
shape = (4, H // 8, W // 8)
|
| 924 |
|
|
|
|
| 1310 |
strength, scale, seed, eta, condition_mode]
|
| 1311 |
run_button.click(fn=process_colorization, inputs=ips, outputs=[result_gallery])
|
| 1312 |
|
| 1313 |
+
with gr.TabItem("Deblurring"):
|
| 1314 |
with gr.Row():
|
| 1315 |
gr.Markdown("## UniControl Stable Diffusion with Image Deblurring")
|
| 1316 |
with gr.Row():
|