Spaces:
Runtime error
Runtime error
| import itertools | |
| import logging | |
| import os.path as osp | |
| import tempfile | |
| from collections import OrderedDict | |
| import annotator.uniformer.mmcv as mmcv | |
| import numpy as np | |
| import pycocotools | |
| from annotator.uniformer.mmcv.utils import print_log | |
| from pycocotools.coco import COCO | |
| from pycocotools.cocoeval import COCOeval | |
| from terminaltables import AsciiTable | |
| from annotator.uniformer.mmdet.core import eval_recalls | |
| from .builder import DATASETS | |
| from .custom import CustomDataset | |
| class CocoDataset(CustomDataset): | |
| CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | |
| 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', | |
| 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', | |
| 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', | |
| 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', | |
| 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', | |
| 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', | |
| 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', | |
| 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', | |
| 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', | |
| 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', | |
| 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', | |
| 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', | |
| 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush') | |
| def load_annotations(self, ann_file): | |
| """Load annotation from COCO style annotation file. | |
| Args: | |
| ann_file (str): Path of annotation file. | |
| Returns: | |
| list[dict]: Annotation info from COCO api. | |
| """ | |
| if not getattr(pycocotools, '__version__', '0') >= '12.0.2': | |
| raise AssertionError( | |
| 'Incompatible version of pycocotools is installed. ' | |
| 'Run pip uninstall pycocotools first. Then run pip ' | |
| 'install mmpycocotools to install open-mmlab forked ' | |
| 'pycocotools.') | |
| self.coco = COCO(ann_file) | |
| self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) | |
| self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} | |
| self.img_ids = self.coco.get_img_ids() | |
| data_infos = [] | |
| total_ann_ids = [] | |
| for i in self.img_ids: | |
| info = self.coco.load_imgs([i])[0] | |
| info['filename'] = info['file_name'] | |
| data_infos.append(info) | |
| ann_ids = self.coco.get_ann_ids(img_ids=[i]) | |
| total_ann_ids.extend(ann_ids) | |
| assert len(set(total_ann_ids)) == len( | |
| total_ann_ids), f"Annotation ids in '{ann_file}' are not unique!" | |
| return data_infos | |
| def get_ann_info(self, idx): | |
| """Get COCO annotation by index. | |
| Args: | |
| idx (int): Index of data. | |
| Returns: | |
| dict: Annotation info of specified index. | |
| """ | |
| img_id = self.data_infos[idx]['id'] | |
| ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) | |
| ann_info = self.coco.load_anns(ann_ids) | |
| return self._parse_ann_info(self.data_infos[idx], ann_info) | |
| def get_cat_ids(self, idx): | |
| """Get COCO category ids by index. | |
| Args: | |
| idx (int): Index of data. | |
| Returns: | |
| list[int]: All categories in the image of specified index. | |
| """ | |
| img_id = self.data_infos[idx]['id'] | |
| ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) | |
| ann_info = self.coco.load_anns(ann_ids) | |
| return [ann['category_id'] for ann in ann_info] | |
| def _filter_imgs(self, min_size=32): | |
| """Filter images too small or without ground truths.""" | |
| valid_inds = [] | |
| # obtain images that contain annotation | |
| ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) | |
| # obtain images that contain annotations of the required categories | |
| ids_in_cat = set() | |
| for i, class_id in enumerate(self.cat_ids): | |
| ids_in_cat |= set(self.coco.cat_img_map[class_id]) | |
| # merge the image id sets of the two conditions and use the merged set | |
| # to filter out images if self.filter_empty_gt=True | |
| ids_in_cat &= ids_with_ann | |
| valid_img_ids = [] | |
| for i, img_info in enumerate(self.data_infos): | |
| img_id = self.img_ids[i] | |
| if self.filter_empty_gt and img_id not in ids_in_cat: | |
| continue | |
| if min(img_info['width'], img_info['height']) >= min_size: | |
| valid_inds.append(i) | |
| valid_img_ids.append(img_id) | |
| self.img_ids = valid_img_ids | |
| return valid_inds | |
| def _parse_ann_info(self, img_info, ann_info): | |
| """Parse bbox and mask annotation. | |
| Args: | |
| ann_info (list[dict]): Annotation info of an image. | |
| with_mask (bool): Whether to parse mask annotations. | |
| Returns: | |
| dict: A dict containing the following keys: bboxes, bboxes_ignore,\ | |
| labels, masks, seg_map. "masks" are raw annotations and not \ | |
| decoded into binary masks. | |
| """ | |
| gt_bboxes = [] | |
| gt_labels = [] | |
| gt_bboxes_ignore = [] | |
| gt_masks_ann = [] | |
| for i, ann in enumerate(ann_info): | |
| if ann.get('ignore', False): | |
| continue | |
| x1, y1, w, h = ann['bbox'] | |
| inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) | |
| inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) | |
| if inter_w * inter_h == 0: | |
| continue | |
| if ann['area'] <= 0 or w < 1 or h < 1: | |
| continue | |
| if ann['category_id'] not in self.cat_ids: | |
| continue | |
| bbox = [x1, y1, x1 + w, y1 + h] | |
| if ann.get('iscrowd', False): | |
| gt_bboxes_ignore.append(bbox) | |
| else: | |
| gt_bboxes.append(bbox) | |
| gt_labels.append(self.cat2label[ann['category_id']]) | |
| gt_masks_ann.append(ann.get('segmentation', None)) | |
| if gt_bboxes: | |
| gt_bboxes = np.array(gt_bboxes, dtype=np.float32) | |
| gt_labels = np.array(gt_labels, dtype=np.int64) | |
| else: | |
| gt_bboxes = np.zeros((0, 4), dtype=np.float32) | |
| gt_labels = np.array([], dtype=np.int64) | |
| if gt_bboxes_ignore: | |
| gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) | |
| else: | |
| gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) | |
| seg_map = img_info['filename'].replace('jpg', 'png') | |
| ann = dict( | |
| bboxes=gt_bboxes, | |
| labels=gt_labels, | |
| bboxes_ignore=gt_bboxes_ignore, | |
| masks=gt_masks_ann, | |
| seg_map=seg_map) | |
| return ann | |
| def xyxy2xywh(self, bbox): | |
| """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO | |
| evaluation. | |
| Args: | |
| bbox (numpy.ndarray): The bounding boxes, shape (4, ), in | |
| ``xyxy`` order. | |
| Returns: | |
| list[float]: The converted bounding boxes, in ``xywh`` order. | |
| """ | |
| _bbox = bbox.tolist() | |
| return [ | |
| _bbox[0], | |
| _bbox[1], | |
| _bbox[2] - _bbox[0], | |
| _bbox[3] - _bbox[1], | |
| ] | |
| def _proposal2json(self, results): | |
| """Convert proposal results to COCO json style.""" | |
| json_results = [] | |
| for idx in range(len(self)): | |
| img_id = self.img_ids[idx] | |
| bboxes = results[idx] | |
| for i in range(bboxes.shape[0]): | |
| data = dict() | |
| data['image_id'] = img_id | |
| data['bbox'] = self.xyxy2xywh(bboxes[i]) | |
| data['score'] = float(bboxes[i][4]) | |
| data['category_id'] = 1 | |
| json_results.append(data) | |
| return json_results | |
| def _det2json(self, results): | |
| """Convert detection results to COCO json style.""" | |
| json_results = [] | |
| for idx in range(len(self)): | |
| img_id = self.img_ids[idx] | |
| result = results[idx] | |
| for label in range(len(result)): | |
| bboxes = result[label] | |
| for i in range(bboxes.shape[0]): | |
| data = dict() | |
| data['image_id'] = img_id | |
| data['bbox'] = self.xyxy2xywh(bboxes[i]) | |
| data['score'] = float(bboxes[i][4]) | |
| data['category_id'] = self.cat_ids[label] | |
| json_results.append(data) | |
| return json_results | |
| def _segm2json(self, results): | |
| """Convert instance segmentation results to COCO json style.""" | |
| bbox_json_results = [] | |
| segm_json_results = [] | |
| for idx in range(len(self)): | |
| img_id = self.img_ids[idx] | |
| det, seg = results[idx] | |
| for label in range(len(det)): | |
| # bbox results | |
| bboxes = det[label] | |
| for i in range(bboxes.shape[0]): | |
| data = dict() | |
| data['image_id'] = img_id | |
| data['bbox'] = self.xyxy2xywh(bboxes[i]) | |
| data['score'] = float(bboxes[i][4]) | |
| data['category_id'] = self.cat_ids[label] | |
| bbox_json_results.append(data) | |
| # segm results | |
| # some detectors use different scores for bbox and mask | |
| if isinstance(seg, tuple): | |
| segms = seg[0][label] | |
| mask_score = seg[1][label] | |
| else: | |
| segms = seg[label] | |
| mask_score = [bbox[4] for bbox in bboxes] | |
| for i in range(bboxes.shape[0]): | |
| data = dict() | |
| data['image_id'] = img_id | |
| data['bbox'] = self.xyxy2xywh(bboxes[i]) | |
| data['score'] = float(mask_score[i]) | |
| data['category_id'] = self.cat_ids[label] | |
| if isinstance(segms[i]['counts'], bytes): | |
| segms[i]['counts'] = segms[i]['counts'].decode() | |
| data['segmentation'] = segms[i] | |
| segm_json_results.append(data) | |
| return bbox_json_results, segm_json_results | |
| def results2json(self, results, outfile_prefix): | |
| """Dump the detection results to a COCO style json file. | |
| There are 3 types of results: proposals, bbox predictions, mask | |
| predictions, and they have different data types. This method will | |
| automatically recognize the type, and dump them to json files. | |
| Args: | |
| results (list[list | tuple | ndarray]): Testing results of the | |
| dataset. | |
| outfile_prefix (str): The filename prefix of the json files. If the | |
| prefix is "somepath/xxx", the json files will be named | |
| "somepath/xxx.bbox.json", "somepath/xxx.segm.json", | |
| "somepath/xxx.proposal.json". | |
| Returns: | |
| dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ | |
| values are corresponding filenames. | |
| """ | |
| result_files = dict() | |
| if isinstance(results[0], list): | |
| json_results = self._det2json(results) | |
| result_files['bbox'] = f'{outfile_prefix}.bbox.json' | |
| result_files['proposal'] = f'{outfile_prefix}.bbox.json' | |
| mmcv.dump(json_results, result_files['bbox']) | |
| elif isinstance(results[0], tuple): | |
| json_results = self._segm2json(results) | |
| result_files['bbox'] = f'{outfile_prefix}.bbox.json' | |
| result_files['proposal'] = f'{outfile_prefix}.bbox.json' | |
| result_files['segm'] = f'{outfile_prefix}.segm.json' | |
| mmcv.dump(json_results[0], result_files['bbox']) | |
| mmcv.dump(json_results[1], result_files['segm']) | |
| elif isinstance(results[0], np.ndarray): | |
| json_results = self._proposal2json(results) | |
| result_files['proposal'] = f'{outfile_prefix}.proposal.json' | |
| mmcv.dump(json_results, result_files['proposal']) | |
| else: | |
| raise TypeError('invalid type of results') | |
| return result_files | |
| def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): | |
| gt_bboxes = [] | |
| for i in range(len(self.img_ids)): | |
| ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) | |
| ann_info = self.coco.load_anns(ann_ids) | |
| if len(ann_info) == 0: | |
| gt_bboxes.append(np.zeros((0, 4))) | |
| continue | |
| bboxes = [] | |
| for ann in ann_info: | |
| if ann.get('ignore', False) or ann['iscrowd']: | |
| continue | |
| x1, y1, w, h = ann['bbox'] | |
| bboxes.append([x1, y1, x1 + w, y1 + h]) | |
| bboxes = np.array(bboxes, dtype=np.float32) | |
| if bboxes.shape[0] == 0: | |
| bboxes = np.zeros((0, 4)) | |
| gt_bboxes.append(bboxes) | |
| recalls = eval_recalls( | |
| gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) | |
| ar = recalls.mean(axis=1) | |
| return ar | |
| def format_results(self, results, jsonfile_prefix=None, **kwargs): | |
| """Format the results to json (standard format for COCO evaluation). | |
| Args: | |
| results (list[tuple | numpy.ndarray]): Testing results of the | |
| dataset. | |
| jsonfile_prefix (str | None): The prefix of json files. It includes | |
| the file path and the prefix of filename, e.g., "a/b/prefix". | |
| If not specified, a temp file will be created. Default: None. | |
| Returns: | |
| tuple: (result_files, tmp_dir), result_files is a dict containing \ | |
| the json filepaths, tmp_dir is the temporal directory created \ | |
| for saving json files when jsonfile_prefix is not specified. | |
| """ | |
| assert isinstance(results, list), 'results must be a list' | |
| assert len(results) == len(self), ( | |
| 'The length of results is not equal to the dataset len: {} != {}'. | |
| format(len(results), len(self))) | |
| if jsonfile_prefix is None: | |
| tmp_dir = tempfile.TemporaryDirectory() | |
| jsonfile_prefix = osp.join(tmp_dir.name, 'results') | |
| else: | |
| tmp_dir = None | |
| result_files = self.results2json(results, jsonfile_prefix) | |
| return result_files, tmp_dir | |
| def evaluate(self, | |
| results, | |
| metric='bbox', | |
| logger=None, | |
| jsonfile_prefix=None, | |
| classwise=False, | |
| proposal_nums=(100, 300, 1000), | |
| iou_thrs=None, | |
| metric_items=None): | |
| """Evaluation in COCO protocol. | |
| Args: | |
| results (list[list | tuple]): Testing results of the dataset. | |
| metric (str | list[str]): Metrics to be evaluated. Options are | |
| 'bbox', 'segm', 'proposal', 'proposal_fast'. | |
| logger (logging.Logger | str | None): Logger used for printing | |
| related information during evaluation. Default: None. | |
| jsonfile_prefix (str | None): The prefix of json files. It includes | |
| the file path and the prefix of filename, e.g., "a/b/prefix". | |
| If not specified, a temp file will be created. Default: None. | |
| classwise (bool): Whether to evaluating the AP for each class. | |
| proposal_nums (Sequence[int]): Proposal number used for evaluating | |
| recalls, such as recall@100, recall@1000. | |
| Default: (100, 300, 1000). | |
| iou_thrs (Sequence[float], optional): IoU threshold used for | |
| evaluating recalls/mAPs. If set to a list, the average of all | |
| IoUs will also be computed. If not specified, [0.50, 0.55, | |
| 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. | |
| Default: None. | |
| metric_items (list[str] | str, optional): Metric items that will | |
| be returned. If not specified, ``['AR@100', 'AR@300', | |
| 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be | |
| used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', | |
| 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when | |
| ``metric=='bbox' or metric=='segm'``. | |
| Returns: | |
| dict[str, float]: COCO style evaluation metric. | |
| """ | |
| metrics = metric if isinstance(metric, list) else [metric] | |
| allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] | |
| for metric in metrics: | |
| if metric not in allowed_metrics: | |
| raise KeyError(f'metric {metric} is not supported') | |
| if iou_thrs is None: | |
| iou_thrs = np.linspace( | |
| .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) | |
| if metric_items is not None: | |
| if not isinstance(metric_items, list): | |
| metric_items = [metric_items] | |
| result_files, tmp_dir = self.format_results(results, jsonfile_prefix) | |
| eval_results = OrderedDict() | |
| cocoGt = self.coco | |
| for metric in metrics: | |
| msg = f'Evaluating {metric}...' | |
| if logger is None: | |
| msg = '\n' + msg | |
| print_log(msg, logger=logger) | |
| if metric == 'proposal_fast': | |
| ar = self.fast_eval_recall( | |
| results, proposal_nums, iou_thrs, logger='silent') | |
| log_msg = [] | |
| for i, num in enumerate(proposal_nums): | |
| eval_results[f'AR@{num}'] = ar[i] | |
| log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') | |
| log_msg = ''.join(log_msg) | |
| print_log(log_msg, logger=logger) | |
| continue | |
| if metric not in result_files: | |
| raise KeyError(f'{metric} is not in results') | |
| try: | |
| cocoDt = cocoGt.loadRes(result_files[metric]) | |
| except IndexError: | |
| print_log( | |
| 'The testing results of the whole dataset is empty.', | |
| logger=logger, | |
| level=logging.ERROR) | |
| break | |
| iou_type = 'bbox' if metric == 'proposal' else metric | |
| cocoEval = COCOeval(cocoGt, cocoDt, iou_type) | |
| cocoEval.params.catIds = self.cat_ids | |
| cocoEval.params.imgIds = self.img_ids | |
| cocoEval.params.maxDets = list(proposal_nums) | |
| cocoEval.params.iouThrs = iou_thrs | |
| # mapping of cocoEval.stats | |
| coco_metric_names = { | |
| 'mAP': 0, | |
| 'mAP_50': 1, | |
| 'mAP_75': 2, | |
| 'mAP_s': 3, | |
| 'mAP_m': 4, | |
| 'mAP_l': 5, | |
| 'AR@100': 6, | |
| 'AR@300': 7, | |
| 'AR@1000': 8, | |
| 'AR_s@1000': 9, | |
| 'AR_m@1000': 10, | |
| 'AR_l@1000': 11 | |
| } | |
| if metric_items is not None: | |
| for metric_item in metric_items: | |
| if metric_item not in coco_metric_names: | |
| raise KeyError( | |
| f'metric item {metric_item} is not supported') | |
| if metric == 'proposal': | |
| cocoEval.params.useCats = 0 | |
| cocoEval.evaluate() | |
| cocoEval.accumulate() | |
| cocoEval.summarize() | |
| if metric_items is None: | |
| metric_items = [ | |
| 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', | |
| 'AR_m@1000', 'AR_l@1000' | |
| ] | |
| for item in metric_items: | |
| val = float( | |
| f'{cocoEval.stats[coco_metric_names[item]]:.3f}') | |
| eval_results[item] = val | |
| else: | |
| cocoEval.evaluate() | |
| cocoEval.accumulate() | |
| cocoEval.summarize() | |
| if classwise: # Compute per-category AP | |
| # Compute per-category AP | |
| # from https://github.com/facebookresearch/detectron2/ | |
| precisions = cocoEval.eval['precision'] | |
| # precision: (iou, recall, cls, area range, max dets) | |
| assert len(self.cat_ids) == precisions.shape[2] | |
| results_per_category = [] | |
| for idx, catId in enumerate(self.cat_ids): | |
| # area range index 0: all area ranges | |
| # max dets index -1: typically 100 per image | |
| nm = self.coco.loadCats(catId)[0] | |
| precision = precisions[:, :, idx, 0, -1] | |
| precision = precision[precision > -1] | |
| if precision.size: | |
| ap = np.mean(precision) | |
| else: | |
| ap = float('nan') | |
| results_per_category.append( | |
| (f'{nm["name"]}', f'{float(ap):0.3f}')) | |
| num_columns = min(6, len(results_per_category) * 2) | |
| results_flatten = list( | |
| itertools.chain(*results_per_category)) | |
| headers = ['category', 'AP'] * (num_columns // 2) | |
| results_2d = itertools.zip_longest(*[ | |
| results_flatten[i::num_columns] | |
| for i in range(num_columns) | |
| ]) | |
| table_data = [headers] | |
| table_data += [result for result in results_2d] | |
| table = AsciiTable(table_data) | |
| print_log('\n' + table.table, logger=logger) | |
| if metric_items is None: | |
| metric_items = [ | |
| 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' | |
| ] | |
| for metric_item in metric_items: | |
| key = f'{metric}_{metric_item}' | |
| val = float( | |
| f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' | |
| ) | |
| eval_results[key] = val | |
| ap = cocoEval.stats[:6] | |
| eval_results[f'{metric}_mAP_copypaste'] = ( | |
| f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' | |
| f'{ap[4]:.3f} {ap[5]:.3f}') | |
| if tmp_dir is not None: | |
| tmp_dir.cleanup() | |
| return eval_results | |