Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 2,147 Bytes
			
			| b334e29 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | from typing import Tuple
import torch
from torch.autograd import Function
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
    '_ext', ['three_interpolate_forward', 'three_interpolate_backward'])
class ThreeInterpolate(Function):
    """Performs weighted linear interpolation on 3 features.
    Please refer to `Paper of PointNet++ <https://arxiv.org/abs/1706.02413>`_
    for more details.
    """
    @staticmethod
    def forward(ctx, features: torch.Tensor, indices: torch.Tensor,
                weight: torch.Tensor) -> torch.Tensor:
        """
        Args:
            features (Tensor): (B, C, M) Features descriptors to be
                interpolated
            indices (Tensor): (B, n, 3) index three nearest neighbors
                of the target features in features
            weight (Tensor): (B, n, 3) weights of interpolation
        Returns:
            Tensor: (B, C, N) tensor of the interpolated features
        """
        assert features.is_contiguous()
        assert indices.is_contiguous()
        assert weight.is_contiguous()
        B, c, m = features.size()
        n = indices.size(1)
        ctx.three_interpolate_for_backward = (indices, weight, m)
        output = torch.cuda.FloatTensor(B, c, n)
        ext_module.three_interpolate_forward(
            features, indices, weight, output, b=B, c=c, m=m, n=n)
        return output
    @staticmethod
    def backward(
        ctx, grad_out: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Args:
            grad_out (Tensor): (B, C, N) tensor with gradients of outputs
        Returns:
            Tensor: (B, C, M) tensor with gradients of features
        """
        idx, weight, m = ctx.three_interpolate_for_backward
        B, c, n = grad_out.size()
        grad_features = torch.cuda.FloatTensor(B, c, m).zero_()
        grad_out_data = grad_out.data.contiguous()
        ext_module.three_interpolate_backward(
            grad_out_data, idx, weight, grad_features.data, b=B, c=c, n=n, m=m)
        return grad_features, None, None
three_interpolate = ThreeInterpolate.apply
 |