Various Improvements
Browse files- app.py +27 -8
- chat_chains.py +29 -23
- openai_configuration.py +7 -0
app.py
CHANGED
|
@@ -20,27 +20,30 @@ from chain_of_density import chain_of_density_chain
|
|
| 20 |
from insights_bullet_chain import insights_bullet_chain
|
| 21 |
from synopsis_chain import synopsis_chain
|
| 22 |
from custom_exceptions import InvalidArgumentError, InvalidCommandError
|
|
|
|
| 23 |
|
| 24 |
st.set_page_config(layout="wide")
|
| 25 |
-
os.environ["OPENAI_API_KEY"] = "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"
|
| 26 |
|
| 27 |
|
| 28 |
welcome_message = """
|
| 29 |
-
Hi I'm Agent Zeta, your AI assistant, dedicated to making your journey through machine learning research papers as insightful and interactive as possible.
|
|
|
|
| 30 |
|
| 31 |
Here's a quick guide to getting started with me:
|
| 32 |
|
| 33 |
| Command | Description |
|
| 34 |
|---------|-------------|
|
|
|
|
| 35 |
| `/add-papers <list of urls>` | Upload and process documents for our conversation. |
|
| 36 |
| `/library` | View an index of processed documents to easily navigate your research. |
|
|
|
|
| 37 |
| `/session-expense` | Calculate the cost of our conversation, ensuring transparency in resource usage. |
|
| 38 |
| `/export` | Download conversation data for your records or further analysis. |
|
| 39 |
| `/auto-insight <document id>` | Automatically generate questions and answers for the paper. |
|
| 40 |
-
| `/deep-dive [<list of document ids>] <query>` | Query me with a specific context. |
|
| 41 |
| `/condense-summary <document id>` | Generate increasingly concise, entity-dense summaries of the paper. |
|
| 42 |
| `/insight-bullets <list of document ids>` | Extract and summarize key insights, methods, results, and conclusions. |
|
| 43 |
| `/paper-synopsis <document id>` | Generate a synopsis of the paper. |
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
<br>
|
|
@@ -70,6 +73,12 @@ def index_documents_wrapper(inputs=None):
|
|
| 70 |
return (response, "dataframe")
|
| 71 |
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def calculate_cost_wrapper(inputs=None):
|
| 74 |
try:
|
| 75 |
stats_df = pd.DataFrame(st.session_state.costing)
|
|
@@ -122,7 +131,7 @@ def download_conversation_wrapper(inputs=None):
|
|
| 122 |
def query_llm(inputs, relevant_docs):
|
| 123 |
with get_openai_callback() as cb:
|
| 124 |
response = (
|
| 125 |
-
qa_chain(ChatOpenAI(model=
|
| 126 |
.invoke({"context": format_docs(relevant_docs), "question": inputs})
|
| 127 |
.content
|
| 128 |
)
|
|
@@ -174,7 +183,7 @@ def chain_of_density_wrapper(inputs):
|
|
| 174 |
if inputs == "":
|
| 175 |
raise InvalidArgumentError("Please provide a document id")
|
| 176 |
document = st.session_state.documents[inputs].page_content
|
| 177 |
-
llm = ChatOpenAI(model=
|
| 178 |
with get_openai_callback() as cb:
|
| 179 |
summary = chain_of_density_chain(llm).invoke({"paper": document})
|
| 180 |
stats = cb
|
|
@@ -193,7 +202,7 @@ def synopsis_wrapper(inputs):
|
|
| 193 |
if inputs == "":
|
| 194 |
raise InvalidArgumentError("Please provide a document id")
|
| 195 |
document = st.session_state.documents[inputs].page_content
|
| 196 |
-
llm = ChatOpenAI(model=
|
| 197 |
with get_openai_callback() as cb:
|
| 198 |
summary = synopsis_chain(llm).invoke({"paper": document})
|
| 199 |
stats = cb
|
|
@@ -212,7 +221,7 @@ def insights_bullet_wrapper(inputs):
|
|
| 212 |
if inputs == "":
|
| 213 |
raise InvalidArgumentError("Please provide a document id")
|
| 214 |
document = "\n\n".join([st.session_state.documents[c].page_content for c in inputs])
|
| 215 |
-
llm = ChatOpenAI(model=
|
| 216 |
with get_openai_callback() as cb:
|
| 217 |
insights = insights_bullet_chain(llm).invoke({"paper": document})
|
| 218 |
stats = cb
|
|
@@ -231,7 +240,7 @@ def auto_qa_chain_wrapper(inputs):
|
|
| 231 |
if inputs == "":
|
| 232 |
raise InvalidArgumentError("Please provide a document id")
|
| 233 |
document = st.session_state.documents[inputs].page_content
|
| 234 |
-
llm = ChatOpenAI(model=
|
| 235 |
auto_qa_conversation = []
|
| 236 |
with get_openai_callback() as cb:
|
| 237 |
auto_qa_response = auto_qa_chain(llm).invoke({"paper": document})
|
|
@@ -288,10 +297,20 @@ def boot(command_center, formating_functions):
|
|
| 288 |
st.error(e)
|
| 289 |
|
| 290 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
if __name__ == "__main__":
|
| 292 |
all_commands = [
|
|
|
|
| 293 |
("/add-papers", list, process_documents_wrapper),
|
| 294 |
("/library", None, index_documents_wrapper),
|
|
|
|
| 295 |
("/session-expense", None, calculate_cost_wrapper),
|
| 296 |
("/export", None, download_conversation_wrapper),
|
| 297 |
("/help-me", None, lambda x: (welcome_message, "identity")),
|
|
|
|
| 20 |
from insights_bullet_chain import insights_bullet_chain
|
| 21 |
from synopsis_chain import synopsis_chain
|
| 22 |
from custom_exceptions import InvalidArgumentError, InvalidCommandError
|
| 23 |
+
from openai_configuration import openai_parser
|
| 24 |
|
| 25 |
st.set_page_config(layout="wide")
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
welcome_message = """
|
| 29 |
+
Hi I'm Agent Zeta, your AI assistant, dedicated to making your journey through machine learning research papers as insightful and interactive as possible.
|
| 30 |
+
Whether you're diving into the latest studies or brushing up on foundational papers, I'm here to help navigate, discuss, and analyze content with you.
|
| 31 |
|
| 32 |
Here's a quick guide to getting started with me:
|
| 33 |
|
| 34 |
| Command | Description |
|
| 35 |
|---------|-------------|
|
| 36 |
+
| `/configure --key <api key> --model <model>` | Configure the OpenAI API key and model for our conversation. |
|
| 37 |
| `/add-papers <list of urls>` | Upload and process documents for our conversation. |
|
| 38 |
| `/library` | View an index of processed documents to easily navigate your research. |
|
| 39 |
+
| `/view-doc <document id>` | View the content of a specific document. |
|
| 40 |
| `/session-expense` | Calculate the cost of our conversation, ensuring transparency in resource usage. |
|
| 41 |
| `/export` | Download conversation data for your records or further analysis. |
|
| 42 |
| `/auto-insight <document id>` | Automatically generate questions and answers for the paper. |
|
|
|
|
| 43 |
| `/condense-summary <document id>` | Generate increasingly concise, entity-dense summaries of the paper. |
|
| 44 |
| `/insight-bullets <list of document ids>` | Extract and summarize key insights, methods, results, and conclusions. |
|
| 45 |
| `/paper-synopsis <document id>` | Generate a synopsis of the paper. |
|
| 46 |
+
| `/deep-dive [<list of document ids>] <query>` | Query me with a specific context. |
|
| 47 |
|
| 48 |
|
| 49 |
<br>
|
|
|
|
| 73 |
return (response, "dataframe")
|
| 74 |
|
| 75 |
|
| 76 |
+
def view_document_wrapper(inputs):
|
| 77 |
+
response = st.session_state.documents[inputs].page_content
|
| 78 |
+
st.session_state.messages.append((f"/view-doc {inputs}", response, "identity"))
|
| 79 |
+
return (response, "identity")
|
| 80 |
+
|
| 81 |
+
|
| 82 |
def calculate_cost_wrapper(inputs=None):
|
| 83 |
try:
|
| 84 |
stats_df = pd.DataFrame(st.session_state.costing)
|
|
|
|
| 131 |
def query_llm(inputs, relevant_docs):
|
| 132 |
with get_openai_callback() as cb:
|
| 133 |
response = (
|
| 134 |
+
qa_chain(ChatOpenAI(model=st.session_state.model, temperature=0))
|
| 135 |
.invoke({"context": format_docs(relevant_docs), "question": inputs})
|
| 136 |
.content
|
| 137 |
)
|
|
|
|
| 183 |
if inputs == "":
|
| 184 |
raise InvalidArgumentError("Please provide a document id")
|
| 185 |
document = st.session_state.documents[inputs].page_content
|
| 186 |
+
llm = ChatOpenAI(model=st.session_state.model, temperature=0)
|
| 187 |
with get_openai_callback() as cb:
|
| 188 |
summary = chain_of_density_chain(llm).invoke({"paper": document})
|
| 189 |
stats = cb
|
|
|
|
| 202 |
if inputs == "":
|
| 203 |
raise InvalidArgumentError("Please provide a document id")
|
| 204 |
document = st.session_state.documents[inputs].page_content
|
| 205 |
+
llm = ChatOpenAI(model=st.session_state.model, temperature=0)
|
| 206 |
with get_openai_callback() as cb:
|
| 207 |
summary = synopsis_chain(llm).invoke({"paper": document})
|
| 208 |
stats = cb
|
|
|
|
| 221 |
if inputs == "":
|
| 222 |
raise InvalidArgumentError("Please provide a document id")
|
| 223 |
document = "\n\n".join([st.session_state.documents[c].page_content for c in inputs])
|
| 224 |
+
llm = ChatOpenAI(model=st.session_state.model, temperature=0)
|
| 225 |
with get_openai_callback() as cb:
|
| 226 |
insights = insights_bullet_chain(llm).invoke({"paper": document})
|
| 227 |
stats = cb
|
|
|
|
| 240 |
if inputs == "":
|
| 241 |
raise InvalidArgumentError("Please provide a document id")
|
| 242 |
document = st.session_state.documents[inputs].page_content
|
| 243 |
+
llm = ChatOpenAI(model=st.session_state.model, temperature=0)
|
| 244 |
auto_qa_conversation = []
|
| 245 |
with get_openai_callback() as cb:
|
| 246 |
auto_qa_response = auto_qa_chain(llm).invoke({"paper": document})
|
|
|
|
| 297 |
st.error(e)
|
| 298 |
|
| 299 |
|
| 300 |
+
def configure_openai_wrapper(inputs):
|
| 301 |
+
args = openai_parser.parse_args(inputs.split())
|
| 302 |
+
os.environ["OPENAI_API_KEY"] = args.key
|
| 303 |
+
st.session_state.model = args.model
|
| 304 |
+
st.session_state.messages.append(("/configure", str(args), "identity"))
|
| 305 |
+
return (str(args), "identity")
|
| 306 |
+
|
| 307 |
+
|
| 308 |
if __name__ == "__main__":
|
| 309 |
all_commands = [
|
| 310 |
+
("/configure", str, configure_openai_wrapper),
|
| 311 |
("/add-papers", list, process_documents_wrapper),
|
| 312 |
("/library", None, index_documents_wrapper),
|
| 313 |
+
("/view-doc", str, view_document_wrapper),
|
| 314 |
("/session-expense", None, calculate_cost_wrapper),
|
| 315 |
("/export", None, download_conversation_wrapper),
|
| 316 |
("/help-me", None, lambda x: (welcome_message, "identity")),
|
chat_chains.py
CHANGED
|
@@ -32,7 +32,6 @@ By following these guidelines, you ensure that users receive valuable, accurate,
|
|
| 32 |
qa_prompt = ChatPromptTemplate.from_messages(
|
| 33 |
[
|
| 34 |
("system", qa_system_prompt),
|
| 35 |
-
# MessagesPlaceholder(variable_name="chat_history"),
|
| 36 |
("human", "{question}"),
|
| 37 |
]
|
| 38 |
)
|
|
@@ -60,33 +59,40 @@ qa_chain = lambda llm: (
|
|
| 60 |
|
| 61 |
def parse_model_response(input_string):
|
| 62 |
parsed_data = {"answer": "", "citations": []}
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
outside_text_parts.append(
|
| 76 |
-
input_string[last_end_pos : match.start() + last_end_pos]
|
| 77 |
)
|
| 78 |
-
last_end_pos += match.end()
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
|
| 89 |
-
|
|
|
|
|
|
|
| 90 |
|
| 91 |
return parsed_data
|
| 92 |
|
|
|
|
| 32 |
qa_prompt = ChatPromptTemplate.from_messages(
|
| 33 |
[
|
| 34 |
("system", qa_system_prompt),
|
|
|
|
| 35 |
("human", "{question}"),
|
| 36 |
]
|
| 37 |
)
|
|
|
|
| 59 |
|
| 60 |
def parse_model_response(input_string):
|
| 61 |
parsed_data = {"answer": "", "citations": []}
|
| 62 |
+
try:
|
| 63 |
+
xml_matches = re.findall(r"<citations>.*?</citations>", input_string, re.DOTALL)
|
| 64 |
+
if not xml_matches:
|
| 65 |
+
parsed_data["answer"] = input_string
|
| 66 |
+
return parsed_data
|
| 67 |
+
|
| 68 |
+
outside_text_parts = []
|
| 69 |
+
last_end_pos = 0
|
| 70 |
+
|
| 71 |
+
for xml_string in xml_matches:
|
| 72 |
+
match = re.search(
|
| 73 |
+
re.escape(xml_string), input_string[last_end_pos:], re.DOTALL
|
|
|
|
|
|
|
| 74 |
)
|
|
|
|
| 75 |
|
| 76 |
+
if match:
|
| 77 |
+
outside_text_parts.append(
|
| 78 |
+
input_string[last_end_pos : match.start() + last_end_pos]
|
| 79 |
+
)
|
| 80 |
+
last_end_pos += match.end()
|
| 81 |
+
|
| 82 |
+
root = ET.fromstring(xml_string)
|
| 83 |
|
| 84 |
+
for citation in root.findall("citation"):
|
| 85 |
+
source_id = citation.find("source_id").text
|
| 86 |
+
quote = citation.find("quote").text
|
| 87 |
+
parsed_data["citations"].append(
|
| 88 |
+
{"source_id": source_id, "quote": quote}
|
| 89 |
+
)
|
| 90 |
|
| 91 |
+
outside_text_parts.append(input_string[last_end_pos:])
|
| 92 |
|
| 93 |
+
parsed_data["answer"] = "".join(outside_text_parts)
|
| 94 |
+
except Exception as e:
|
| 95 |
+
parsed_data["answer"] = input_string
|
| 96 |
|
| 97 |
return parsed_data
|
| 98 |
|
openai_configuration.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
|
| 3 |
+
openai_parser = argparse.ArgumentParser(description="OpenAI Configuration")
|
| 4 |
+
openai_parser.add_argument("--key", type=str, help="OpenAI API Key")
|
| 5 |
+
openai_parser.add_argument(
|
| 6 |
+
"--model", type=str, help="OpenAI Model", default="gpt-4-turbo-preview"
|
| 7 |
+
)
|