Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +87 -0
- image_captioning_model.pt +3 -0
- model.py +442 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torchvision import transforms
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from transformers import AutoTokenizer
|
| 6 |
+
from model import CaptioningTransformer
|
| 7 |
+
|
| 8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
+
image_size = 128
|
| 10 |
+
patch_size = 8
|
| 11 |
+
d_model = 192
|
| 12 |
+
n_layers = 6
|
| 13 |
+
n_heads = 8
|
| 14 |
+
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 16 |
+
|
| 17 |
+
transform = transforms.Compose(
|
| 18 |
+
[
|
| 19 |
+
transforms.Resize(image_size),
|
| 20 |
+
transforms.CenterCrop(image_size),
|
| 21 |
+
transforms.ToTensor(),
|
| 22 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 23 |
+
]
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Instantiate your model
|
| 27 |
+
model = CaptioningTransformer(
|
| 28 |
+
image_size=image_size,
|
| 29 |
+
in_channels=3, # RGB images
|
| 30 |
+
vocab_size=tokenizer.vocab_size,
|
| 31 |
+
device=device,
|
| 32 |
+
patch_size=patch_size,
|
| 33 |
+
n_layers=n_layers,
|
| 34 |
+
d_model=d_model,
|
| 35 |
+
n_heads=n_heads,
|
| 36 |
+
).to(device)
|
| 37 |
+
|
| 38 |
+
# Load your pre-trained weights (make sure the .pt file is in your repo)
|
| 39 |
+
model_path = "image_captioning_model.pt"
|
| 40 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 41 |
+
model.eval()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# This is your existing inference function (you can modify as needed)
|
| 45 |
+
def make_prediction(model, sos_token, eos_token, image, max_len, temp, device):
|
| 46 |
+
log_tokens = [sos_token] # Start with the start-of-sequence token
|
| 47 |
+
with torch.inference_mode():
|
| 48 |
+
# Get image embeddings from the encoder
|
| 49 |
+
image_embedding = model.encoder(image.to(device))
|
| 50 |
+
for _ in range(max_len):
|
| 51 |
+
input_tokens = torch.cat(log_tokens, dim=1)
|
| 52 |
+
data_pred = model.decoder(input_tokens.to(device), image_embedding)
|
| 53 |
+
# Get the logits for the most recent token only
|
| 54 |
+
dist = torch.distributions.Categorical(logits=data_pred[:, -1] / temp)
|
| 55 |
+
next_tokens = dist.sample().reshape(1, 1)
|
| 56 |
+
log_tokens.append(next_tokens.cpu())
|
| 57 |
+
if next_tokens.item() == 102: # Assuming 102 is your [SEP] token
|
| 58 |
+
break
|
| 59 |
+
return torch.cat(log_tokens, dim=1)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# Define the Gradio prediction function
|
| 63 |
+
def predict(image: Image.Image):
|
| 64 |
+
# Preprocess the image
|
| 65 |
+
img_tensor = transform(image).unsqueeze(0) # Shape: (1, 3, image_size, image_size)
|
| 66 |
+
# Create a start-of-sequence token (assuming 101 is your [CLS] token)
|
| 67 |
+
sos_token = 101 * torch.ones(1, 1).long().to(device)
|
| 68 |
+
# Generate caption tokens using your inference function
|
| 69 |
+
tokens = make_prediction(
|
| 70 |
+
model, sos_token, 102, img_tensor, max_len=50, temp=0.5, device=device
|
| 71 |
+
)
|
| 72 |
+
# Decode tokens to text (skipping special tokens)
|
| 73 |
+
caption = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
| 74 |
+
return caption
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Create a Gradio interface
|
| 78 |
+
iface = gr.Interface(
|
| 79 |
+
fn=predict,
|
| 80 |
+
inputs=gr.Image(type="pil"),
|
| 81 |
+
outputs="text",
|
| 82 |
+
title="Image Captioning Model",
|
| 83 |
+
description="Upload an image and get a caption generated by the model.",
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
if __name__ == "__main__":
|
| 87 |
+
iface.launch()
|
image_captioning_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:526b7cb3a1a70d6bb5503629b69e9d664efd0ba8f22a7cc1d035b9a42f6abc24
|
| 3 |
+
size 72371272
|
model.py
ADDED
|
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import math
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class PatchEmbedding(nn.Module):
|
| 7 |
+
def __init__(self, in_channels: int = 3, patch_size: int = 16, d_model: int = 128):
|
| 8 |
+
super().__init__()
|
| 9 |
+
|
| 10 |
+
self.patch_size = patch_size
|
| 11 |
+
self.d_model = d_model
|
| 12 |
+
|
| 13 |
+
self.unfold = nn.Unfold(kernel_size=patch_size, stride=patch_size)
|
| 14 |
+
self.proj = nn.Linear(in_channels * patch_size * patch_size, d_model)
|
| 15 |
+
|
| 16 |
+
def forward(self, x):
|
| 17 |
+
batch_size, c, h, w = x.shape
|
| 18 |
+
|
| 19 |
+
# Unfold to extract patches: shape becomes (batch_size, in_channels * patch_size * patch_size, num_patches)
|
| 20 |
+
# num_patches = (H / patch_size) * (W / patch_size)
|
| 21 |
+
patches = self.unfold(x)
|
| 22 |
+
|
| 23 |
+
# Transpose to (batch_size, num_patches, in_channels * patch_size * patch_size)
|
| 24 |
+
patches = patches.transpose(1, 2)
|
| 25 |
+
|
| 26 |
+
# Apply linear projection to each patch: (batch_size, num_patches, in_channels * patch_size * patch_size) -> (batch_size, num_patches, d_model)
|
| 27 |
+
return self.proj(patches)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Positional Encoding
|
| 31 |
+
class PositionalEncoding(nn.Module):
|
| 32 |
+
def __init__(self, d_model: int):
|
| 33 |
+
"""
|
| 34 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 35 |
+
"""
|
| 36 |
+
super().__init__()
|
| 37 |
+
|
| 38 |
+
# Intead of precomputing fixed values, we will compute in the forward pass based off of the sinusodiual encoding formula
|
| 39 |
+
self.d_model = d_model
|
| 40 |
+
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
device = x.device
|
| 43 |
+
half_dim = self.d_model // 2 # Use half for sin and half for cos
|
| 44 |
+
emb = math.log(10000.0) / (half_dim - 1)
|
| 45 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
| 46 |
+
emb = x[:, None] * emb[None, :] # (batch_size, half_dim)
|
| 47 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
| 48 |
+
return emb
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# Multi-Head Self-Attention
|
| 52 |
+
class MultiHeadAttention(nn.Module):
|
| 53 |
+
def __init__(self, d_model: int = 512, n_heads: int = 8, dropout: float = 0.1):
|
| 54 |
+
"""
|
| 55 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 56 |
+
n_heads: number of self attention heads per sequence
|
| 57 |
+
dropout: probability of dropout
|
| 58 |
+
"""
|
| 59 |
+
super().__init__()
|
| 60 |
+
assert (
|
| 61 |
+
d_model % n_heads == 0
|
| 62 |
+
) # We want to make sure that the dimensions are split evenly among the attention heads.
|
| 63 |
+
self.d_model = d_model
|
| 64 |
+
self.n_heads = n_heads
|
| 65 |
+
self.d_key = d_model // n_heads
|
| 66 |
+
|
| 67 |
+
self.Wq = nn.Linear(d_model, d_model) # Learnable weights for query
|
| 68 |
+
self.Wk = nn.Linear(d_model, d_model) # Learnable weights for key
|
| 69 |
+
self.Wv = nn.Linear(d_model, d_model) # Learnable weights for value
|
| 70 |
+
self.Wo = nn.Linear(d_model, d_model) # Learnable weights for output
|
| 71 |
+
|
| 72 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 73 |
+
|
| 74 |
+
def forward(self, query, key, value, mask=None):
|
| 75 |
+
"""
|
| 76 |
+
query: (batch_size, q_length, d_model)
|
| 77 |
+
key: (batch_size, k_length, d_model)
|
| 78 |
+
value: (batch_size, s_length, d_model)
|
| 79 |
+
"""
|
| 80 |
+
batch_size = key.size(0)
|
| 81 |
+
|
| 82 |
+
# Matrix multiplication for Q, K, and V tensors
|
| 83 |
+
Q = self.Wq(query)
|
| 84 |
+
K = self.Wk(key)
|
| 85 |
+
V = self.Wv(value)
|
| 86 |
+
|
| 87 |
+
# Split each tensor into heads
|
| 88 |
+
Q = Q.view(batch_size, -1, self.n_heads, self.d_key).permute(
|
| 89 |
+
0, 2, 1, 3
|
| 90 |
+
) # (batch_size, n_heads, q_length, d_key)
|
| 91 |
+
K = K.view(batch_size, -1, self.n_heads, self.d_key).permute(
|
| 92 |
+
0, 2, 1, 3
|
| 93 |
+
) # (batch_size, n_heads, k_length, d_key)
|
| 94 |
+
V = V.view(batch_size, -1, self.n_heads, self.d_key).permute(
|
| 95 |
+
0, 2, 1, 3
|
| 96 |
+
) # (batch_size, n_heads, v_length, d_key)
|
| 97 |
+
|
| 98 |
+
# Scaled dot product
|
| 99 |
+
# K^T becomees (batch_size, n_heads, d_key, k_length)
|
| 100 |
+
scaled_dot_product = torch.matmul(Q, K.permute(0, 1, 3, 2)) / math.sqrt(
|
| 101 |
+
self.d_key
|
| 102 |
+
) # (batch_size, n_heads, q_length, k_length)
|
| 103 |
+
|
| 104 |
+
if mask is not None:
|
| 105 |
+
scaled_dot_product = scaled_dot_product.masked_fill(
|
| 106 |
+
mask == 0, -float("inf")
|
| 107 |
+
) # Filling it with 0 would result in 1 after the mask because e^0 = 1. Intead we fill it with an infinitley large negative number
|
| 108 |
+
|
| 109 |
+
# Softmax function for attention probabilities
|
| 110 |
+
attention_probs = torch.softmax(scaled_dot_product, dim=-1)
|
| 111 |
+
|
| 112 |
+
# Multiply by V to get attention with respect to the values
|
| 113 |
+
A = torch.matmul(self.dropout(attention_probs), V)
|
| 114 |
+
|
| 115 |
+
# Reshape attention back to (batch_size, q_length, d_model)
|
| 116 |
+
A = (
|
| 117 |
+
A.permute(0, 2, 1, 3)
|
| 118 |
+
.contiguous()
|
| 119 |
+
.view(batch_size, -1, self.n_heads * self.d_key)
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Pass through the final linear layer
|
| 123 |
+
output = self.Wo(A)
|
| 124 |
+
|
| 125 |
+
return (
|
| 126 |
+
output,
|
| 127 |
+
attention_probs,
|
| 128 |
+
) # Output shape: (batch_size, q_length, d_model), Attention probs shape: (batch_size, n_heads, q_length, k_length)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# Position-Wise Feed Forward Network (FFN)
|
| 132 |
+
class PositionwiseFeedForward(nn.Module):
|
| 133 |
+
def __init__(self, d_model: int, dropout: float = 0.1):
|
| 134 |
+
"""
|
| 135 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 136 |
+
dropout: probability of dropout
|
| 137 |
+
"""
|
| 138 |
+
super().__init__()
|
| 139 |
+
|
| 140 |
+
self.ffn = nn.Sequential(
|
| 141 |
+
nn.Linear(in_features=d_model, out_features=(d_model * 4)),
|
| 142 |
+
nn.GELU(),
|
| 143 |
+
nn.Linear(in_features=(d_model * 4), out_features=d_model),
|
| 144 |
+
nn.Dropout(p=dropout),
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
def forward(self, x):
|
| 148 |
+
return self.ffn(x)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# Encoder Layer
|
| 152 |
+
class EncoderLayer(nn.Module):
|
| 153 |
+
def __init__(self, d_model: int, n_heads: int, dropout: float = 0.1):
|
| 154 |
+
"""
|
| 155 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 156 |
+
n_heads: number of self attention heads per sequence
|
| 157 |
+
dropout: probability of dropout
|
| 158 |
+
"""
|
| 159 |
+
super().__init__()
|
| 160 |
+
|
| 161 |
+
# Multi-Head Self-Attention sublayer
|
| 162 |
+
self.attention = MultiHeadAttention(
|
| 163 |
+
d_model=d_model, n_heads=n_heads, dropout=dropout
|
| 164 |
+
)
|
| 165 |
+
self.attention_layer_norm = nn.LayerNorm(d_model) # Layer normalization
|
| 166 |
+
|
| 167 |
+
# Position-wise Feed-forward Network
|
| 168 |
+
self.position_wise_ffn = PositionwiseFeedForward(
|
| 169 |
+
d_model=d_model, dropout=dropout
|
| 170 |
+
)
|
| 171 |
+
self.ffn_layer_norm = nn.LayerNorm(d_model) # Layer normalization
|
| 172 |
+
|
| 173 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 174 |
+
|
| 175 |
+
def forward(self, src):
|
| 176 |
+
"""
|
| 177 |
+
src: embedded sequences (batch_size, seq_length, d_model)
|
| 178 |
+
"""
|
| 179 |
+
# Multi-Head Attention
|
| 180 |
+
|
| 181 |
+
_src, attention_probs = self.attention(
|
| 182 |
+
src, src, src, None
|
| 183 |
+
) # Q, K, V, src_mask: we don't need a source mask because all images are the same dimension
|
| 184 |
+
|
| 185 |
+
# Residual Addition and Layer Normalization
|
| 186 |
+
src = self.attention_layer_norm(
|
| 187 |
+
src + self.dropout(_src)
|
| 188 |
+
) # We do residual addition by adding back the src (the embeddings) to the output of Self-Attention
|
| 189 |
+
|
| 190 |
+
# Position-wise Feed-forward Network
|
| 191 |
+
_src = self.position_wise_ffn(src)
|
| 192 |
+
|
| 193 |
+
# Residual Addition and Layer Normalization
|
| 194 |
+
src = self.ffn_layer_norm(src + self.dropout(_src))
|
| 195 |
+
|
| 196 |
+
return src, attention_probs
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
# The Encoder that takes in images and returns the encoding to be passed into the decoder
|
| 200 |
+
class Encoder(nn.Module):
|
| 201 |
+
def __init__(
|
| 202 |
+
self,
|
| 203 |
+
image_size: int,
|
| 204 |
+
in_channels: int,
|
| 205 |
+
patch_size: int = 16,
|
| 206 |
+
d_model: int = 128,
|
| 207 |
+
n_layers: int = 3,
|
| 208 |
+
n_heads: int = 4,
|
| 209 |
+
dropout: float = 0.1,
|
| 210 |
+
):
|
| 211 |
+
"""
|
| 212 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 213 |
+
n_layers: number of encoder layers in the encoder block
|
| 214 |
+
n_heads: number of self attention heads per sequence
|
| 215 |
+
dropout: probability of dropout
|
| 216 |
+
"""
|
| 217 |
+
super().__init__()
|
| 218 |
+
|
| 219 |
+
self.patch_size = patch_size
|
| 220 |
+
|
| 221 |
+
self.patch_emb = PatchEmbedding(
|
| 222 |
+
patch_size=patch_size, in_channels=in_channels, d_model=d_model
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
seq_length = (image_size // patch_size) ** 2
|
| 226 |
+
|
| 227 |
+
# Image src is going to use a learnable positional encoding
|
| 228 |
+
self.pos_embedding = nn.Parameter(
|
| 229 |
+
torch.empty(1, seq_length, d_model).normal_(std=0.02)
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
# Create n_layers encoders
|
| 233 |
+
self.layers = nn.ModuleList(
|
| 234 |
+
[
|
| 235 |
+
EncoderLayer(d_model=d_model, n_heads=n_heads, dropout=dropout)
|
| 236 |
+
for layer in range(n_layers)
|
| 237 |
+
]
|
| 238 |
+
)
|
| 239 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 240 |
+
|
| 241 |
+
def forward(self, src):
|
| 242 |
+
"""
|
| 243 |
+
src: embedded sequences (batch_size, seq_length, d_model)
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
# Extract the patches and apply a linear layer
|
| 247 |
+
batch_size = src.shape[0]
|
| 248 |
+
src = self.patch_emb(src)
|
| 249 |
+
|
| 250 |
+
# Add the learned positional embedding
|
| 251 |
+
src = src + self.pos_embedding
|
| 252 |
+
|
| 253 |
+
# Pass the sequences through each encoder layer
|
| 254 |
+
for layer in self.layers:
|
| 255 |
+
src, attention_probs = layer(src)
|
| 256 |
+
|
| 257 |
+
self.attention_probs = attention_probs
|
| 258 |
+
|
| 259 |
+
return src
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
# Decoder Layer
|
| 263 |
+
class DecoderLayer(nn.Module):
|
| 264 |
+
def __init__(self, d_model: int, n_heads: int, dropout: float = 0.1):
|
| 265 |
+
"""
|
| 266 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 267 |
+
n_heads: number of self attention heads per sequence
|
| 268 |
+
dropout: probability of dropout
|
| 269 |
+
"""
|
| 270 |
+
super().__init__()
|
| 271 |
+
|
| 272 |
+
# Masked Multi-Head Self-Attention sublayer
|
| 273 |
+
self.masked_attention = MultiHeadAttention(
|
| 274 |
+
d_model=d_model, n_heads=n_heads, dropout=dropout
|
| 275 |
+
)
|
| 276 |
+
self.masked_attention_layer_norm = nn.LayerNorm(d_model) # Layer normalization
|
| 277 |
+
|
| 278 |
+
# Multi-Head Self-Attention sublayer
|
| 279 |
+
self.attention = MultiHeadAttention(
|
| 280 |
+
d_model=d_model, n_heads=n_heads, dropout=dropout
|
| 281 |
+
)
|
| 282 |
+
self.attention_layer_norm = nn.LayerNorm(d_model) # Layer normalization
|
| 283 |
+
|
| 284 |
+
# Position-wise Feed-forward Network
|
| 285 |
+
self.position_wise_ffn = PositionwiseFeedForward(
|
| 286 |
+
d_model=d_model, dropout=dropout
|
| 287 |
+
)
|
| 288 |
+
self.ffn_layer_norm = nn.LayerNorm(d_model) # Layer normalization
|
| 289 |
+
|
| 290 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 291 |
+
|
| 292 |
+
def forward(self, trg, src, trg_mask):
|
| 293 |
+
"""
|
| 294 |
+
trg: embedded captions (batch_size, trg_seq_length, d_model)
|
| 295 |
+
src: embedded images (batch_size, src_seq_length, d_model)
|
| 296 |
+
trg_mask: mask for the captions preventing peeking at future tokens (batch_size, 1, trg_seq_length, trg_seq_length)
|
| 297 |
+
"""
|
| 298 |
+
|
| 299 |
+
# Masked Multi-Head Attention
|
| 300 |
+
|
| 301 |
+
# The target mask is used to prevent the model from seeing future tokens. This ensures that the prediction is made solely based on past and present tokens.
|
| 302 |
+
_trg, masked_attention_probs = self.masked_attention(
|
| 303 |
+
trg, trg, trg, trg_mask
|
| 304 |
+
) # Q, K, V, mask
|
| 305 |
+
|
| 306 |
+
# Residual Addition and Layer Normalization
|
| 307 |
+
trg = self.masked_attention_layer_norm(trg + self.dropout(_trg))
|
| 308 |
+
|
| 309 |
+
# Multi-Head Attention - This time, we also pass in the output of the encoder layers as src.
|
| 310 |
+
# This is important because this allows us to keep track of and learn relationships between the input and output tokens.
|
| 311 |
+
_trg, attention_probs = self.attention(trg, src, src, None) # Q, K, V, mask
|
| 312 |
+
# Residual Addition and Layer Normalization
|
| 313 |
+
trg = self.attention_layer_norm(trg + self.dropout(_trg))
|
| 314 |
+
|
| 315 |
+
# Position-wise Feed-forward Network
|
| 316 |
+
_trg = self.position_wise_ffn(trg)
|
| 317 |
+
# Residual Addition and Layer Normalization
|
| 318 |
+
trg = self.ffn_layer_norm(trg + self.dropout(_trg))
|
| 319 |
+
|
| 320 |
+
return trg, attention_probs, masked_attention_probs
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
# The Decoder Module that takes the encoded images from the encoder and generates captions
|
| 324 |
+
class Decoder(nn.Module):
|
| 325 |
+
def __init__(
|
| 326 |
+
self,
|
| 327 |
+
vocab_size: int,
|
| 328 |
+
d_model: int = 128,
|
| 329 |
+
n_layers: int = 3,
|
| 330 |
+
n_heads: int = 4,
|
| 331 |
+
dropout: float = 0.1,
|
| 332 |
+
):
|
| 333 |
+
"""
|
| 334 |
+
vocab_size: size of the target vocabulary
|
| 335 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 336 |
+
n_layers: number of encoder layers in the encoder block
|
| 337 |
+
n_heads: number of self attention heads per sequence
|
| 338 |
+
dropout: probability of dropout
|
| 339 |
+
"""
|
| 340 |
+
super().__init__()
|
| 341 |
+
|
| 342 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
| 343 |
+
|
| 344 |
+
self.embedding.weight.data = 0.001 * self.embedding.weight.data
|
| 345 |
+
|
| 346 |
+
# Initialize sinusoidal positional embeddings
|
| 347 |
+
self.pos_emb = PositionalEncoding(d_model=d_model)
|
| 348 |
+
|
| 349 |
+
# Create n_layers decoders
|
| 350 |
+
self.layers = nn.ModuleList(
|
| 351 |
+
[
|
| 352 |
+
DecoderLayer(d_model=d_model, n_heads=n_heads, dropout=dropout)
|
| 353 |
+
for layer in range(n_layers)
|
| 354 |
+
]
|
| 355 |
+
)
|
| 356 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 357 |
+
|
| 358 |
+
# Output layer
|
| 359 |
+
self.Wo = nn.Linear(in_features=d_model, out_features=vocab_size)
|
| 360 |
+
|
| 361 |
+
def make_trg_mask(self, trg):
|
| 362 |
+
seq_length = trg.shape[1]
|
| 363 |
+
|
| 364 |
+
trg_mask = torch.tril(
|
| 365 |
+
torch.ones((seq_length, seq_length), device=trg.device)
|
| 366 |
+
).bool()
|
| 367 |
+
|
| 368 |
+
return trg_mask.unsqueeze(0).unsqueeze(
|
| 369 |
+
0
|
| 370 |
+
) # (batch_size=1, n_heads=1, seq_length, seq_length)
|
| 371 |
+
|
| 372 |
+
def forward(self, trg, src):
|
| 373 |
+
"""
|
| 374 |
+
trg: target sequences (batch_size, trg_seq_length, d_model)
|
| 375 |
+
src: embedding images (batch_size, src_seq_length, d_model)
|
| 376 |
+
"""
|
| 377 |
+
|
| 378 |
+
# Embed the target captions
|
| 379 |
+
trg = self.embedding(trg)
|
| 380 |
+
batch_size, l, h = trg.shape
|
| 381 |
+
|
| 382 |
+
trg_index = torch.arange(l, device=trg.device)
|
| 383 |
+
pos_emb = self.pos_emb(trg_index).reshape(1, l, h).expand(batch_size, l, h)
|
| 384 |
+
# Add the fixed sinusodial positional embedding
|
| 385 |
+
trg += pos_emb
|
| 386 |
+
|
| 387 |
+
# Create a target mask for the target captions to prevent the model from peeking at future tokens
|
| 388 |
+
trg_mask = self.make_trg_mask(
|
| 389 |
+
trg
|
| 390 |
+
) # (batch_size, 1, trg_seq_length, trg_seq_length)
|
| 391 |
+
|
| 392 |
+
# Pass the sequences through each decoder layer
|
| 393 |
+
for layer in self.layers:
|
| 394 |
+
trg, attention_probs, masked_attention_probs = layer(trg, src, trg_mask)
|
| 395 |
+
|
| 396 |
+
self.attention_probs = attention_probs
|
| 397 |
+
self.masked_attention_probs = masked_attention_probs # (batch_size, n_heads, trg_seq_len, src_seq_len) trg_seq_len: length of the target caption \ src_seq_len: number of patches from the encoder
|
| 398 |
+
|
| 399 |
+
# Final linear output layer
|
| 400 |
+
return self.Wo(trg)
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
class CaptioningTransformer(nn.Module):
|
| 404 |
+
def __init__(
|
| 405 |
+
self,
|
| 406 |
+
image_size: int,
|
| 407 |
+
in_channels: int,
|
| 408 |
+
vocab_size: int,
|
| 409 |
+
device,
|
| 410 |
+
patch_size: int = 16,
|
| 411 |
+
d_model: int = 128,
|
| 412 |
+
n_layers: int = 3,
|
| 413 |
+
n_heads: int = 4,
|
| 414 |
+
):
|
| 415 |
+
super().__init__()
|
| 416 |
+
|
| 417 |
+
self.device = device
|
| 418 |
+
|
| 419 |
+
# Create an encoder and decoder with specified parameters
|
| 420 |
+
self.encoder = Encoder(
|
| 421 |
+
image_size=image_size,
|
| 422 |
+
in_channels=in_channels,
|
| 423 |
+
patch_size=patch_size,
|
| 424 |
+
d_model=d_model,
|
| 425 |
+
n_layers=n_layers,
|
| 426 |
+
n_heads=n_heads,
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
self.decoder = Decoder(
|
| 430 |
+
vocab_size=vocab_size, d_model=d_model, n_layers=n_layers, n_heads=n_heads
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
def forward(self, src, trg):
|
| 434 |
+
# Encoder layers
|
| 435 |
+
src = self.encoder(src) # (batch_size, src_seq_length, d_model)
|
| 436 |
+
|
| 437 |
+
# Decoder layers
|
| 438 |
+
output = self.decoder(
|
| 439 |
+
trg, src
|
| 440 |
+
) # Pass in both the target (for Masked Multi-Head Self-Attention) and source for (Cross-Attention)
|
| 441 |
+
|
| 442 |
+
return output
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
transformers
|
| 4 |
+
gradio
|
| 5 |
+
Pillow
|