Spaces:
Sleeping
Sleeping
import torch | |
from torchvision import transforms | |
from PIL import Image | |
import gradio as gr | |
from transformers import AutoTokenizer | |
from model import CaptioningTransformer | |
css_str = """ | |
body { | |
background-color: #121212; | |
color: #e0e0e0; | |
font-family: Arial, sans-serif; | |
} | |
.container { | |
max-width: 700px; | |
margin: 15px auto; | |
} | |
h1 { | |
font-size: 36px; | |
font-weight: bold; | |
text-align: center; | |
color: #ffffff; | |
} | |
.description { | |
font-size: 18px; | |
text-align: center; | |
color: #b0b0b0; | |
} | |
""" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
image_size = 128 | |
patch_size = 8 | |
d_model = 192 | |
n_layers = 6 | |
n_heads = 8 | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") | |
transform = transforms.Compose( | |
[ | |
transforms.Resize(image_size), | |
transforms.CenterCrop(image_size), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
] | |
) | |
model = CaptioningTransformer( | |
image_size=image_size, | |
in_channels=3, | |
vocab_size=tokenizer.vocab_size, | |
device=device, | |
patch_size=patch_size, | |
n_layers=n_layers, | |
d_model=d_model, | |
n_heads=n_heads, | |
).to(device) | |
model_path = "image_captioning_model.pt" | |
model.load_state_dict(torch.load(model_path, map_location=device)) | |
model.eval() | |
def make_prediction( | |
model, sos_token, eos_token, image, max_len=50, temp=0.5, device=device | |
): | |
log_tokens = [sos_token] | |
with torch.inference_mode(): | |
image_embedding = model.encoder(image.to(device)) | |
for _ in range(max_len): | |
input_tokens = torch.cat(log_tokens, dim=1) | |
data_pred = model.decoder(input_tokens.to(device), image_embedding) | |
dist = torch.distributions.Categorical(logits=data_pred[:, -1] / temp) | |
next_tokens = dist.sample().reshape(1, 1) | |
log_tokens.append(next_tokens.cpu()) | |
if next_tokens.item() == 102: | |
break | |
return torch.cat(log_tokens, dim=1) | |
def predict(image: Image.Image): | |
img_tensor = transform(image).unsqueeze(0) | |
sos_token = 101 * torch.ones(1, 1).long().to(device) | |
tokens = make_prediction(model, sos_token, 102, img_tensor) | |
caption = tokenizer.decode(tokens[0], skip_special_tokens=True) | |
return caption | |
with gr.Blocks(css=css_str) as demo: | |
gr.HTML("<div class='container'>") | |
gr.Markdown("<h1>Image Captioning</h1>") | |
gr.Markdown( | |
"<div class='description'>Upload an image and get a descriptive caption about the image:</div>" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="pil", label="Your Image") | |
generate_button = gr.Button("Generate Caption") | |
with gr.Column(): | |
caption_output = gr.Textbox( | |
label="Caption Output", | |
placeholder="Your generated caption will appear here...", | |
) | |
generate_button.click(fn=predict, inputs=image_input, outputs=caption_output) | |
gr.HTML("</div>") | |
if __name__ == "__main__": | |
demo.launch(share=True) | |