Rezuwan's picture
Update app.py
e504b62 verified
from ultralytics import YOLO
import torch
import cv2
import numpy as np
import gradio as gr
from PIL import Image
# Load YOLOv8 model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = YOLO(f"yolo_model.pt").to(device)
model.to(device)
model.eval()
# Load COCO class labels
CLASS_NAMES = model.names # YOLO's built-in class names
def preprocess_image(image):
image = Image.fromarray(image)
image = image.convert("RGB")
return image
def detect_objects(image):
image = preprocess_image(image)
results = model.predict(image) # Run YOLO inference
# Convert results to bounding box format
image = np.array(image)
for result in results:
for box, cls, conf in zip(result.boxes.xyxy, result.boxes.cls, result.boxes.conf):
x1, y1, x2, y2 = map(int, box[:4])
class_name = CLASS_NAMES[int(cls)] # Get class name
confidence = conf.item() * 100 # Convert confidence to percentage
# Draw a bolder bounding box
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 4) # Increased thickness
# Larger text for class label
label = f"{class_name} ({confidence:.1f}%)"
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
1, (0, 255, 0), 3, cv2.LINE_AA) # Larger text
return image
# Gradio UI with Submit button
iface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Image(type="numpy", label="Detected Objects"),
title="Vehicle, Pedestrians and Signboard detection",
description=(
f"""
Use webcam or Upload an image to detect objects.
Note: The model can detect 3 classes of objects (Vehicles, Pedestrians and Signboards).
This model's API is also integrated to another [WebApp](https://yolov8-custom-training-object-detection-j3besa9ppegzcdzslzsk8t.streamlit.app/).
"""
),
allow_flagging="never" # Disables unwanted flags
)
iface.launch()