Spaces:
Running
on
Zero
Running
on
Zero
Refactored Code (#3)
Browse files- Refactored Code (0f266a9994c6faa8fbd5f0acb3ab0578d8bd43ee)
Co-authored-by: Nishith Jain <[email protected]>
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import random
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
from chatterbox.src.chatterbox.tts import ChatterboxTTS
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
|
@@ -9,38 +9,32 @@ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
9 |
print(f"🚀 Running on device: {DEVICE}")
|
10 |
|
11 |
# --- Global Model Initialization ---
|
12 |
-
# Load the model once when the application starts.
|
13 |
-
# This model will be accessible by the @spaces.GPU decorated function.
|
14 |
MODEL = None
|
15 |
|
16 |
def get_or_load_model():
|
|
|
|
|
17 |
global MODEL
|
18 |
if MODEL is None:
|
19 |
-
print("
|
20 |
try:
|
21 |
MODEL = ChatterboxTTS.from_pretrained(DEVICE)
|
22 |
-
|
23 |
-
if DEVICE == "cuda" and hasattr(MODEL, 'to'):
|
24 |
MODEL.to(DEVICE)
|
25 |
-
print(f"
|
26 |
-
if hasattr(MODEL, 'device'): # If the model object has a device attribute
|
27 |
-
print(f"Model internal device attribute: {MODEL.device}")
|
28 |
except Exception as e:
|
29 |
-
print(f"Error loading
|
30 |
raise
|
31 |
return MODEL
|
32 |
|
33 |
# Attempt to load the model at startup.
|
34 |
-
# If this fails, the app will likely fail to start, which is informative.
|
35 |
try:
|
36 |
get_or_load_model()
|
37 |
except Exception as e:
|
38 |
-
|
39 |
-
print(f"CRITICAL: Failed to load model on startup. Error: {e}")
|
40 |
-
# You might want to display an error in Gradio if this happens,
|
41 |
-
# but for now, a print is fine for debugging.
|
42 |
|
43 |
def set_seed(seed: int):
|
|
|
44 |
torch.manual_seed(seed)
|
45 |
if DEVICE == "cuda":
|
46 |
torch.cuda.manual_seed(seed)
|
@@ -48,46 +42,78 @@ def set_seed(seed: int):
|
|
48 |
random.seed(seed)
|
49 |
np.random.seed(seed)
|
50 |
|
51 |
-
@spaces.GPU
|
52 |
-
def generate_tts_audio(
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
if current_model is None:
|
56 |
-
|
57 |
-
# Or, it indicates an issue with the global model pattern in this specific env.
|
58 |
-
raise RuntimeError("Model could not be loaded or accessed.")
|
59 |
|
60 |
if seed_num_input != 0:
|
61 |
set_seed(int(seed_num_input))
|
62 |
|
63 |
-
print(f"Generating audio for text: '{text_input}'")
|
64 |
wav = current_model.generate(
|
65 |
-
text_input[:300],
|
66 |
audio_prompt_path=audio_prompt_path_input,
|
67 |
exaggeration=exaggeration_input,
|
68 |
temperature=temperature_input,
|
69 |
cfg_weight=cfgw_input,
|
70 |
)
|
71 |
print("Audio generation complete.")
|
72 |
-
# ONLY return pickleable data
|
73 |
return (current_model.sr, wav.squeeze(0).numpy())
|
74 |
|
75 |
-
|
76 |
with gr.Blocks() as demo:
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
80 |
with gr.Row():
|
81 |
with gr.Column():
|
82 |
-
text = gr.Textbox(
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
with gr.Accordion("More options", open=False):
|
88 |
seed_num = gr.Number(value=0, label="Random seed (0 for random)")
|
89 |
-
temp = gr.Slider(0.05, 5, step=.05, label="
|
90 |
-
|
91 |
|
92 |
run_btn = gr.Button("Generate", variant="primary")
|
93 |
|
@@ -95,9 +121,8 @@ with gr.Blocks() as demo:
|
|
95 |
audio_output = gr.Audio(label="Output Audio")
|
96 |
|
97 |
run_btn.click(
|
98 |
-
fn=generate_tts_audio,
|
99 |
inputs=[
|
100 |
-
# model_state, # Removed: model is now global
|
101 |
text,
|
102 |
ref_wav,
|
103 |
exaggeration,
|
@@ -105,10 +130,7 @@ with gr.Blocks() as demo:
|
|
105 |
seed_num,
|
106 |
cfg_weight,
|
107 |
],
|
108 |
-
outputs=[audio_output],
|
109 |
)
|
110 |
|
111 |
-
demo.
|
112 |
-
max_size=50,
|
113 |
-
default_concurrency_limit=1, # Important for a single global model
|
114 |
-
).launch() # share=True is not needed and causes a warning on Spaces
|
|
|
1 |
import random
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from chatterbox.src.chatterbox.tts import ChatterboxTTS
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
|
|
|
9 |
print(f"🚀 Running on device: {DEVICE}")
|
10 |
|
11 |
# --- Global Model Initialization ---
|
|
|
|
|
12 |
MODEL = None
|
13 |
|
14 |
def get_or_load_model():
|
15 |
+
"""Loads the ChatterboxTTS model if it hasn't been loaded already,
|
16 |
+
and ensures it's on the correct device."""
|
17 |
global MODEL
|
18 |
if MODEL is None:
|
19 |
+
print("Model not loaded, initializing...")
|
20 |
try:
|
21 |
MODEL = ChatterboxTTS.from_pretrained(DEVICE)
|
22 |
+
if hasattr(MODEL, 'to') and str(MODEL.device) != DEVICE:
|
|
|
23 |
MODEL.to(DEVICE)
|
24 |
+
print(f"Model loaded successfully. Internal device: {getattr(MODEL, 'device', 'N/A')}")
|
|
|
|
|
25 |
except Exception as e:
|
26 |
+
print(f"Error loading model: {e}")
|
27 |
raise
|
28 |
return MODEL
|
29 |
|
30 |
# Attempt to load the model at startup.
|
|
|
31 |
try:
|
32 |
get_or_load_model()
|
33 |
except Exception as e:
|
34 |
+
print(f"CRITICAL: Failed to load model on startup. Application may not function. Error: {e}")
|
|
|
|
|
|
|
35 |
|
36 |
def set_seed(seed: int):
|
37 |
+
"""Sets the random seed for reproducibility across torch, numpy, and random."""
|
38 |
torch.manual_seed(seed)
|
39 |
if DEVICE == "cuda":
|
40 |
torch.cuda.manual_seed(seed)
|
|
|
42 |
random.seed(seed)
|
43 |
np.random.seed(seed)
|
44 |
|
45 |
+
@spaces.GPU
|
46 |
+
def generate_tts_audio(
|
47 |
+
text_input: str,
|
48 |
+
audio_prompt_path_input: str,
|
49 |
+
exaggeration_input: float,
|
50 |
+
temperature_input: float,
|
51 |
+
seed_num_input: int,
|
52 |
+
cfgw_input: float
|
53 |
+
) -> tuple[int, np.ndarray]:
|
54 |
+
"""
|
55 |
+
Generates TTS audio using the ChatterboxTTS model.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
text_input: The text to synthesize (max 300 characters).
|
59 |
+
audio_prompt_path_input: Path to the reference audio file.
|
60 |
+
exaggeration_input: Exaggeration parameter for the model.
|
61 |
+
temperature_input: Temperature parameter for the model.
|
62 |
+
seed_num_input: Random seed (0 for random).
|
63 |
+
cfgw_input: CFG/Pace weight.
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
A tuple containing the sample rate (int) and the audio waveform (numpy.ndarray).
|
67 |
+
"""
|
68 |
+
current_model = get_or_load_model()
|
69 |
|
70 |
if current_model is None:
|
71 |
+
raise RuntimeError("TTS model is not loaded.")
|
|
|
|
|
72 |
|
73 |
if seed_num_input != 0:
|
74 |
set_seed(int(seed_num_input))
|
75 |
|
76 |
+
print(f"Generating audio for text: '{text_input[:50]}...'")
|
77 |
wav = current_model.generate(
|
78 |
+
text_input[:300], # Truncate text to max chars
|
79 |
audio_prompt_path=audio_prompt_path_input,
|
80 |
exaggeration=exaggeration_input,
|
81 |
temperature=temperature_input,
|
82 |
cfg_weight=cfgw_input,
|
83 |
)
|
84 |
print("Audio generation complete.")
|
|
|
85 |
return (current_model.sr, wav.squeeze(0).numpy())
|
86 |
|
|
|
87 |
with gr.Blocks() as demo:
|
88 |
+
gr.Markdown(
|
89 |
+
"""
|
90 |
+
# Chatterbox TTS Demo
|
91 |
+
Generate high-quality speech from text with reference audio styling.
|
92 |
+
"""
|
93 |
+
)
|
94 |
with gr.Row():
|
95 |
with gr.Column():
|
96 |
+
text = gr.Textbox(
|
97 |
+
value="Now let's make my mum's favourite. So three mars bars into the pan. Then we add the tuna and just stir for a bit, just let the chocolate and fish infuse. A sprinkle of olive oil and some tomato ketchup. Now smell that. Oh boy this is going to be incredible.",
|
98 |
+
label="Text to synthesize (max chars 300)",
|
99 |
+
max_lines=5
|
100 |
+
)
|
101 |
+
ref_wav = gr.Audio(
|
102 |
+
sources=["upload", "microphone"],
|
103 |
+
type="filepath",
|
104 |
+
label="Reference Audio File (Optional)",
|
105 |
+
value="https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_shadowheart.flac"
|
106 |
+
)
|
107 |
+
exaggeration = gr.Slider(
|
108 |
+
0.25, 2, step=.05, label="Exaggeration (Neutral = 0.5, extreme values can be unstable)", value=.5
|
109 |
+
)
|
110 |
+
cfg_weight = gr.Slider(
|
111 |
+
0.2, 1, step=.05, label="CFG/Pace", value=0.5
|
112 |
+
)
|
113 |
|
114 |
with gr.Accordion("More options", open=False):
|
115 |
seed_num = gr.Number(value=0, label="Random seed (0 for random)")
|
116 |
+
temp = gr.Slider(0.05, 5, step=.05, label="Temperature", value=.8)
|
|
|
117 |
|
118 |
run_btn = gr.Button("Generate", variant="primary")
|
119 |
|
|
|
121 |
audio_output = gr.Audio(label="Output Audio")
|
122 |
|
123 |
run_btn.click(
|
124 |
+
fn=generate_tts_audio,
|
125 |
inputs=[
|
|
|
126 |
text,
|
127 |
ref_wav,
|
128 |
exaggeration,
|
|
|
130 |
seed_num,
|
131 |
cfg_weight,
|
132 |
],
|
133 |
+
outputs=[audio_output],
|
134 |
)
|
135 |
|
136 |
+
demo.launch()
|
|
|
|
|
|