Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
from spaces import GPU | |
# Load base model and tokenizer | |
BASE_MODEL_NAME = "NousResearch/Meta-Llama-3-8B" | |
LORA_MODEL_NAME = "ubiodee/plutus_llm" | |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME, use_fast=False) | |
base_model = AutoModelForCausalLM.from_pretrained( | |
BASE_MODEL_NAME, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
# Apply LoRA weights | |
model = PeftModel.from_pretrained(base_model, LORA_MODEL_NAME) | |
# Set padding token | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
model.eval() | |
# Response function with ZeroGPU decorator | |
def generate_response(prompt, max_new_tokens=200, temperature=0.7, top_p=0.9): | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to("cuda") | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
if response.startswith(prompt): | |
response = response[len(prompt):].strip() | |
return response | |
# Gradio UI | |
demo = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."), | |
gr.Slider(label="Max New Tokens", minimum=50, maximum=500, value=200, step=10), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7, step=0.1), | |
gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.9, step=0.05) | |
], | |
outputs=gr.Textbox(label="Model Response"), | |
title="Cardano Plutus AI Assistant", | |
description="Ask questions about Plutus smart contracts or Cardano blockchain using ubiodee/plutus_llm." | |
) | |
if __name__ == "__main__": | |
demo.launch() |