Commit
Β·
46c7082
1
Parent(s):
4c2bddb
Add primary keyword to CSV output with * marker
Browse files- Add 'Primary Keyword' column to CSV output
- Include primary keyword as first row with similarity 1.000 and '*' marker
- Comparison keywords have empty string in Primary Keyword column
- Add comprehensive test suite to validate CSV structure
- Update documentation with test details
- TEST_README.md +54 -0
- app.py +5 -1
- test_csv_output.py +146 -0
TEST_README.md
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CSV Output Validation Tests
|
| 2 |
+
|
| 3 |
+
This test suite validates that the CSV output from the Keyword Cosine Similarity Tool includes the primary keyword with proper formatting.
|
| 4 |
+
|
| 5 |
+
## Running the Tests
|
| 6 |
+
|
| 7 |
+
```bash
|
| 8 |
+
python test_csv_output.py
|
| 9 |
+
```
|
| 10 |
+
|
| 11 |
+
## What the Tests Validate
|
| 12 |
+
|
| 13 |
+
### Test 1: Basic CSV Structure
|
| 14 |
+
- β
All required columns are present: `Keyword`, `Cosine Similarity`, `Primary Keyword`
|
| 15 |
+
- β
Primary keyword appears in the first row
|
| 16 |
+
- β
Primary keyword has similarity value of exactly `1.000`
|
| 17 |
+
- β
Primary keyword has `*` marker in the `Primary Keyword` column
|
| 18 |
+
- β
All comparison keywords have empty string `""` in the `Primary Keyword` column
|
| 19 |
+
- β
CSV format is valid and correctly formatted
|
| 20 |
+
|
| 21 |
+
### Test 2: Primary Keyword in Comparison List (Edge Case)
|
| 22 |
+
- β
When the primary keyword appears in the comparison list, it's still marked with `*` in the first row
|
| 23 |
+
- β
The duplicate entry in the comparison results has an empty `Primary Keyword` column
|
| 24 |
+
- β
Exactly one row has the `*` marker (the primary keyword row)
|
| 25 |
+
|
| 26 |
+
### Test 3: Single Comparison Keyword
|
| 27 |
+
- β
Handles edge case of only one comparison keyword correctly
|
| 28 |
+
- β
Primary keyword row is present with `*` marker
|
| 29 |
+
- β
Comparison keyword has empty `Primary Keyword` column
|
| 30 |
+
|
| 31 |
+
### Test 4: Column Order
|
| 32 |
+
- β
Columns are in the correct order: `Keyword`, `Cosine Similarity`, `Primary Keyword`
|
| 33 |
+
|
| 34 |
+
### Test 5: Similarity Sorting
|
| 35 |
+
- β
All comparison keywords are sorted by similarity in descending order
|
| 36 |
+
- β
Primary keyword (1.000) always appears first
|
| 37 |
+
|
| 38 |
+
## Expected CSV Output Format
|
| 39 |
+
|
| 40 |
+
```csv
|
| 41 |
+
Keyword,Cosine Similarity,Primary Keyword
|
| 42 |
+
corporate cards,1.000,*
|
| 43 |
+
business corporate cards,0.8677525,
|
| 44 |
+
card corporate,0.8351246,
|
| 45 |
+
corporate card,0.83510983,
|
| 46 |
+
...
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
## Key Validation Points
|
| 50 |
+
|
| 51 |
+
1. **Primary Keyword Row**: Always first row, similarity = 1.000, `Primary Keyword` = `*`
|
| 52 |
+
2. **Comparison Rows**: Empty string `""` in `Primary Keyword` column
|
| 53 |
+
3. **Parser-Friendly**: Scripts can easily find primary keyword by searching for `*` marker
|
| 54 |
+
4. **Self-Contained**: CSV includes all necessary information without external context
|
app.py
CHANGED
|
@@ -94,8 +94,12 @@ if st.button("Calculate Similarities"):
|
|
| 94 |
|
| 95 |
# Sort results by cosine similarity
|
| 96 |
st.info("Sorting results...")
|
| 97 |
-
results = [{"Keyword": kw, "Cosine Similarity": sim} for kw, sim in zip(keyword_list, similarities)]
|
| 98 |
sorted_results = sorted(results, key=lambda x: x["Cosine Similarity"], reverse=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
# Display results
|
| 101 |
st.header("Results")
|
|
|
|
| 94 |
|
| 95 |
# Sort results by cosine similarity
|
| 96 |
st.info("Sorting results...")
|
| 97 |
+
results = [{"Keyword": kw, "Cosine Similarity": sim, "Primary Keyword": ""} for kw, sim in zip(keyword_list, similarities)]
|
| 98 |
sorted_results = sorted(results, key=lambda x: x["Cosine Similarity"], reverse=True)
|
| 99 |
+
|
| 100 |
+
# Add primary keyword row at the top with "*" marker
|
| 101 |
+
primary_row = {"Keyword": primary_keyword, "Cosine Similarity": 1.000, "Primary Keyword": "*"}
|
| 102 |
+
sorted_results.insert(0, primary_row)
|
| 103 |
|
| 104 |
# Display results
|
| 105 |
st.header("Results")
|
test_csv_output.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def generate_results(primary_keyword, keyword_list, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
| 8 |
+
"""
|
| 9 |
+
Simulates the results generation logic from app.py
|
| 10 |
+
This function extracts the core logic to test CSV output structure
|
| 11 |
+
"""
|
| 12 |
+
# Load model
|
| 13 |
+
model = SentenceTransformer(model_name)
|
| 14 |
+
|
| 15 |
+
# Generate embeddings (without convert_to_tensor to avoid device issues)
|
| 16 |
+
primary_embedding = model.encode(primary_keyword)
|
| 17 |
+
keyword_embeddings = model.encode(keyword_list)
|
| 18 |
+
|
| 19 |
+
# Calculate cosine similarities
|
| 20 |
+
similarities = cosine_similarity([primary_embedding], keyword_embeddings)[0]
|
| 21 |
+
|
| 22 |
+
# Sort results by cosine similarity
|
| 23 |
+
results = [{"Keyword": kw, "Cosine Similarity": sim, "Primary Keyword": ""} for kw, sim in zip(keyword_list, similarities)]
|
| 24 |
+
sorted_results = sorted(results, key=lambda x: x["Cosine Similarity"], reverse=True)
|
| 25 |
+
|
| 26 |
+
# Add primary keyword row at the top with "*" marker
|
| 27 |
+
primary_row = {"Keyword": primary_keyword, "Cosine Similarity": 1.000, "Primary Keyword": "*"}
|
| 28 |
+
sorted_results.insert(0, primary_row)
|
| 29 |
+
|
| 30 |
+
return sorted_results
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def test_csv_structure():
|
| 34 |
+
"""Test that CSV output has correct structure"""
|
| 35 |
+
print("Running CSV structure tests...\n")
|
| 36 |
+
|
| 37 |
+
# Test 1: Basic functionality
|
| 38 |
+
print("Test 1: Basic CSV structure")
|
| 39 |
+
primary = "corporate cards"
|
| 40 |
+
keywords = ["business cards", "credit cards", "debit cards"]
|
| 41 |
+
results = generate_results(primary, keywords)
|
| 42 |
+
df = pd.DataFrame(results)
|
| 43 |
+
csv_output = df.to_csv(index=False)
|
| 44 |
+
|
| 45 |
+
# Validate columns
|
| 46 |
+
assert "Primary Keyword" in df.columns, "β Missing 'Primary Keyword' column"
|
| 47 |
+
assert "Keyword" in df.columns, "β Missing 'Keyword' column"
|
| 48 |
+
assert "Cosine Similarity" in df.columns, "β Missing 'Cosine Similarity' column"
|
| 49 |
+
print("β
All required columns present")
|
| 50 |
+
|
| 51 |
+
# Validate primary keyword row is first
|
| 52 |
+
assert df.iloc[0]["Keyword"] == primary, f"β Primary keyword not first row. Got: {df.iloc[0]['Keyword']}"
|
| 53 |
+
assert df.iloc[0]["Cosine Similarity"] == 1.000, f"β Primary keyword similarity not 1.000. Got: {df.iloc[0]['Cosine Similarity']}"
|
| 54 |
+
assert df.iloc[0]["Primary Keyword"] == "*", f"β Primary keyword marker not '*'. Got: {df.iloc[0]['Primary Keyword']}"
|
| 55 |
+
print(f"β
Primary keyword row correctly formatted: {df.iloc[0]['Keyword']}, {df.iloc[0]['Cosine Similarity']}, {df.iloc[0]['Primary Keyword']}")
|
| 56 |
+
|
| 57 |
+
# Validate comparison keywords have empty Primary Keyword column
|
| 58 |
+
for idx in range(1, len(df)):
|
| 59 |
+
assert df.iloc[idx]["Primary Keyword"] == "", f"β Comparison keyword at row {idx+1} should have empty Primary Keyword. Got: '{df.iloc[idx]['Primary Keyword']}'"
|
| 60 |
+
print(f"β
All {len(df)-1} comparison keywords have empty Primary Keyword column")
|
| 61 |
+
|
| 62 |
+
# Validate CSV format
|
| 63 |
+
lines = csv_output.strip().split('\n')
|
| 64 |
+
assert lines[0] == "Keyword,Cosine Similarity,Primary Keyword", f"β Incorrect CSV header. Got: {lines[0]}"
|
| 65 |
+
assert lines[1].startswith(f"{primary},1.0"), f"β Primary keyword row format incorrect. Got: {lines[1]}"
|
| 66 |
+
assert "*" in lines[1], f"β Missing '*' marker in primary keyword row. Got: {lines[1]}"
|
| 67 |
+
print("β
CSV format is correct")
|
| 68 |
+
|
| 69 |
+
print("\n" + "="*60 + "\n")
|
| 70 |
+
|
| 71 |
+
# Test 2: Primary keyword in comparison list (edge case)
|
| 72 |
+
print("Test 2: Primary keyword appears in comparison list")
|
| 73 |
+
primary2 = "corporate cards"
|
| 74 |
+
keywords2 = ["corporate cards", "business cards", "credit cards"] # Primary is in list
|
| 75 |
+
results2 = generate_results(primary2, keywords2)
|
| 76 |
+
df2 = pd.DataFrame(results2)
|
| 77 |
+
|
| 78 |
+
# Should have primary keyword row first with *
|
| 79 |
+
assert df2.iloc[0]["Keyword"] == primary2, "β Primary keyword not first"
|
| 80 |
+
assert df2.iloc[0]["Primary Keyword"] == "*", "β Primary keyword marker missing"
|
| 81 |
+
|
| 82 |
+
# Should also have the duplicate in comparison results (with empty Primary Keyword)
|
| 83 |
+
primary_count = (df2["Keyword"] == primary2).sum()
|
| 84 |
+
assert primary_count >= 2, "β Primary keyword should appear at least twice (once with *, once without)"
|
| 85 |
+
|
| 86 |
+
# Count rows with * marker (should be exactly 1)
|
| 87 |
+
marker_count = (df2["Primary Keyword"] == "*").sum()
|
| 88 |
+
assert marker_count == 1, f"β Should have exactly 1 '*' marker. Got: {marker_count}"
|
| 89 |
+
print(f"β
Primary keyword correctly marked with '*', duplicate entries handled properly")
|
| 90 |
+
print(f" Total rows: {len(df2)}, Rows with '*': {marker_count}, Primary keyword occurrences: {primary_count}")
|
| 91 |
+
|
| 92 |
+
print("\n" + "="*60 + "\n")
|
| 93 |
+
|
| 94 |
+
# Test 3: Single comparison keyword
|
| 95 |
+
print("Test 3: Single comparison keyword")
|
| 96 |
+
primary3 = "test keyword"
|
| 97 |
+
keywords3 = ["test comparison"]
|
| 98 |
+
results3 = generate_results(primary3, keywords3)
|
| 99 |
+
df3 = pd.DataFrame(results3)
|
| 100 |
+
|
| 101 |
+
assert len(df3) == 2, f"β Should have 2 rows (1 primary + 1 comparison). Got: {len(df3)}"
|
| 102 |
+
assert df3.iloc[0]["Primary Keyword"] == "*", "β Primary keyword marker missing"
|
| 103 |
+
assert df3.iloc[1]["Primary Keyword"] == "", "β Comparison keyword should have empty Primary Keyword"
|
| 104 |
+
print("β
Single comparison keyword handled correctly")
|
| 105 |
+
|
| 106 |
+
print("\n" + "="*60 + "\n")
|
| 107 |
+
|
| 108 |
+
# Test 4: Column order
|
| 109 |
+
print("Test 4: Column order")
|
| 110 |
+
expected_order = ["Keyword", "Cosine Similarity", "Primary Keyword"]
|
| 111 |
+
actual_order = list(df.columns)
|
| 112 |
+
assert actual_order == expected_order, f"β Column order incorrect. Expected: {expected_order}, Got: {actual_order}"
|
| 113 |
+
print(f"β
Column order correct: {actual_order}")
|
| 114 |
+
|
| 115 |
+
print("\n" + "="*60 + "\n")
|
| 116 |
+
|
| 117 |
+
# Test 5: Similarity sorting
|
| 118 |
+
print("Test 5: Results are sorted by similarity (descending)")
|
| 119 |
+
primary4 = "corporate cards"
|
| 120 |
+
keywords4 = ["business cards", "credit cards", "debit cards", "office supplies"]
|
| 121 |
+
results4 = generate_results(primary4, keywords4)
|
| 122 |
+
df4 = pd.DataFrame(results4)
|
| 123 |
+
|
| 124 |
+
# Skip first row (primary keyword with 1.000) and check rest are sorted
|
| 125 |
+
similarities = df4.iloc[1:]["Cosine Similarity"].values
|
| 126 |
+
is_sorted = all(similarities[i] >= similarities[i+1] for i in range(len(similarities)-1))
|
| 127 |
+
assert is_sorted, "β Comparison keywords not sorted by similarity (descending)"
|
| 128 |
+
print("β
Results correctly sorted by similarity (descending)")
|
| 129 |
+
|
| 130 |
+
print("\n" + "="*60 + "\n")
|
| 131 |
+
|
| 132 |
+
print("β
ALL TESTS PASSED! CSV output structure is correct.\n")
|
| 133 |
+
return True
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
if __name__ == "__main__":
|
| 137 |
+
try:
|
| 138 |
+
test_csv_structure()
|
| 139 |
+
except AssertionError as e:
|
| 140 |
+
print(f"\nβ TEST FAILED: {e}")
|
| 141 |
+
exit(1)
|
| 142 |
+
except Exception as e:
|
| 143 |
+
print(f"\nβ ERROR: {e}")
|
| 144 |
+
import traceback
|
| 145 |
+
traceback.print_exc()
|
| 146 |
+
exit(1)
|