Update app.py
Browse files
app.py
CHANGED
|
@@ -1,53 +1,71 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
|
| 29 |
-
buf.close()
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
return
|
| 34 |
|
| 35 |
-
# Función para
|
| 36 |
-
def
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Configurar la interfaz de Gradio
|
| 41 |
demo = gr.Interface(
|
| 42 |
-
fn=
|
| 43 |
-
inputs=
|
| 44 |
-
|
| 45 |
-
gr.
|
| 46 |
-
gr.
|
|
|
|
|
|
|
| 47 |
],
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
description="Genera un gráfico de barras basado en los valores de A, B y C"
|
| 51 |
)
|
| 52 |
|
| 53 |
demo.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
from collections import Counter
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
# Configurar el clasificador de sentimientos multilingüe
|
| 8 |
+
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
|
| 9 |
+
|
| 10 |
+
# Función para analizar los sentimientos de una lista de textos
|
| 11 |
+
def analyze_sentiments(texts):
|
| 12 |
+
if not texts:
|
| 13 |
+
return "0.0%", "0.0%", "0.0%", [] # Manejar el caso donde no hay textos para analizar
|
| 14 |
+
|
| 15 |
+
positive, negative, neutral = 0, 0, 0
|
| 16 |
+
all_words = []
|
| 17 |
+
for text in texts:
|
| 18 |
+
results = classifier(text, ["positive", "negative", "neutral"], multi_label=True)
|
| 19 |
+
mx = max(results['scores'])
|
| 20 |
+
ind = results['scores'].index(mx)
|
| 21 |
+
result = results['labels'][ind]
|
| 22 |
+
if result == "positive":
|
| 23 |
+
positive += 1
|
| 24 |
+
elif result == "negative":
|
| 25 |
+
negative += 1
|
| 26 |
+
else:
|
| 27 |
+
neutral += 1
|
| 28 |
+
|
| 29 |
+
# Procesar palabras del texto
|
| 30 |
+
words = re.findall(r'\w+', text.lower())
|
| 31 |
+
all_words.extend(words)
|
| 32 |
|
| 33 |
+
total = len(texts)
|
| 34 |
+
positive_percent = round((positive / total) * 100, 1)
|
| 35 |
+
negative_percent = round((negative / total) * 100, 1)
|
| 36 |
+
neutral_percent = round((neutral / total) * 100, 1)
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
# Contar las palabras más comunes
|
| 39 |
+
word_counts = Counter(all_words)
|
| 40 |
+
most_common_words = word_counts.most_common(10) # Obtener las 10 palabras más comunes
|
| 41 |
|
| 42 |
+
return f"{positive_percent}%", f"{negative_percent}%", f"{neutral_percent}%", most_common_words
|
| 43 |
|
| 44 |
+
# Función para cargar el archivo CSV y analizar los primeros 100 comentarios
|
| 45 |
+
def analyze_sentiment_from_csv(file):
|
| 46 |
+
try:
|
| 47 |
+
df = pd.read_csv(file.name)
|
| 48 |
+
if 'content' not in df.columns:
|
| 49 |
+
raise ValueError("El archivo CSV no contiene una columna 'content'")
|
| 50 |
+
texts = df['content'].head(100).tolist() # Tomar solo los primeros 100 comentarios
|
| 51 |
+
return analyze_sentiments(texts)
|
| 52 |
+
except pd.errors.ParserError as e:
|
| 53 |
+
return f"Error al analizar el archivo CSV: {e}", "", "", []
|
| 54 |
+
except Exception as e:
|
| 55 |
+
return f"Error inesperado: {e}", "", "", []
|
| 56 |
|
| 57 |
# Configurar la interfaz de Gradio
|
| 58 |
demo = gr.Interface(
|
| 59 |
+
fn=analyze_sentiment_from_csv,
|
| 60 |
+
inputs=gr.File(file_count="single", label="Sube tu archivo CSV"), # Permitir la carga del archivo CSV
|
| 61 |
+
outputs=[
|
| 62 |
+
gr.Textbox(label="Porcentaje Positivo"),
|
| 63 |
+
gr.Textbox(label="Porcentaje Negativo"),
|
| 64 |
+
gr.Textbox(label="Porcentaje Neutro"),
|
| 65 |
+
gr.Textbox(label="Palabras Más Usadas")
|
| 66 |
],
|
| 67 |
+
title="Analizador de Sentimientos V.2",
|
| 68 |
+
description="Porcentaje de comentarios positivos, negativos y neutrales, y palabras más usadas"
|
|
|
|
| 69 |
)
|
| 70 |
|
| 71 |
demo.launch(share=True)
|